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ABSTRACT
In this paper, we consider the problem of distributed load
shedding optimization for disaster recovery in smart grids.
We develop distributed second-order interior-point based load
shedding algorithms that enjoy a fast quadratic convergence
rate. Our main contributions are two-fold: (i) We propose
a rooted spanning tree based reformulation that enables
our distributed algorithm design; (ii) Based on the span-
ning tree reformulation, we design distributed computation
schemes for our proposed second-order interior-point based
load shedding. Collectively, these results serve as an impor-
tant first step in load shedding and disaster recovery that
uses second-order distributed techniques.

1. PROBLEM FORMULATION
Consider a power (sub)network that remains connected

upon removal of the failed portion of the system after a di-
aster strikes. However, we do not assume the availability
of any centralized controller in this sub-network. We rep-
resent this subnetwork by a directed graph G = {N ,L},
where N and L are the sets of buses and transmission lines,
with number of elements |N | = N and |L| = L, respec-
tively. We use an incidence matrix A ∈ R

N×L to represent
the network topology, where the entry (A)nl = 1 if edge l
is coming out of node n, −1 if edge l is going into node n,
and 0 otherwise [1]. We let bl denote the admittance of line

l and let B � Diag {b1, . . . , bL} be a diagonal matrix that
contains all admittances. Suppose that there are G genera-
tor buses in this subnetwork and they are labeled 1, . . . , G.
The remaining N −G buses are load buses and are labeled
G + 1, . . . , N . We let K denote the set of generators, with
|K| = G. We use zn ≥ 0, n /∈ K, to represent the amount
of potential power shed at a load bus. At each generator
bus n ∈ K, we let zn ≥ 0 denote the power generation to

meet the demands. We use z �
[
z1, . . . , zN

]�
to group all

z-variables. Following conventions, we let pn < 0 denote
the power demand at a load bus n /∈ K. For convenience,
we let p � [0, . . . , 0, pG+1, . . . , pN ]� denote the expanded
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power demand vector of all buses. We let fl ∈ R represent
the power flow on line l, where fl could be negative in the
sense that fl’s direction is against the direction of line l (re-

call that G is a directed graph). We use f � [f1, . . . , fL]
�

to group all line flow variables. We let θ � [θ1, . . . , θN ]�

group the phase angle variables of all buses. Then, the load
shedding problem under the DC power flow model can be
formulated as follows:

min
z,θ

{∑
n/∈K

Cn (zn)

∣∣∣∣ f = BA�θ, Af − z = p,
|fl| ≤ fmax, ∀l, 0 ≤ zn ≤ Kn, ∀n.

}
. (1)

In (1), Cn(zn) is a convex and twice-differentiable function
that evaluates the cost incurred by shedding zn units of
load (a standard cost model in power systems analysis [2]);
f = BA�θ corresponds to the DC power flow model (assum-
ing fixed bus voltages and thus θ can fully describe power
constraints [2]); Af − z = p represents the power flow con-
servation law (i.e., incoming plus generated power equals
outgoing and consumed power at all buses); and |fl| ≤ fmax

corresponds to line flow security constraints. In (1), the con-
straint 0 ≤ zn ≤ Kn models the fact that we cannot shed
more load than the actual demand and cannot produce more
power than the limit of each generator bus, where Kn � −pn
for n /∈ K and Kn � Bmax

n for n ∈ K, and where Bmax
n > 0

denotes the capacity of generator n.

2. A DISTRIBUTED INTERIOR-POINT
SECOND-ORDER ALGORITHM

In this paper, we solve Problem (1) by developing an
interior-point second-order distributed approach. The fun-
damental rationale behind our approach is that the operat-
ing point of the system enforced by the interior-point frame-
work is guaranteed to be feasible throughout all iterations
of the algorithm. In contrast, most existing first-order gra-
dient based schemes in the literature (see, e.g., [3] and ref-
erences therein) do not have such feasibility guarantee and
would produce iterates that constantly violate the feasibil-
ity constraints. This is particular problematic for ensuring
the grid’s security if the algorithm needs to be terminated
in a predefined finite number iterations. In what follows, we
outline the key design steps and refer readers to our online
technical report [4] for further details.

Step 1) Rooted Spanning Tree-Based Reformulation: Sup-
pose that we have a rooted spanning tree (RST) rooted at a
generator bus. Without loss of generality, we let this gener-
ator bus be labeled “0”. We attach an artificial root arc l0 to
the root with arbitrary admittance b0 and an artificial line



flow f0.Let T = {N ,L′
0} denote this RST, where the link set

L′
0 � L′ ∪ {l0} with L′ ⊆ L and |L′| = N − 1. Let Ã be the

incidence matrix of T . Let vector f̃ � [fl : l ∈ L′
0]

� ∈ R
N

group all the line flows in T . Let B̃ � Diag {bl : l ∈ L′
0} ∈

R
N×N be the diagonal line admittance matrix with respect

to T . Then, it can be shown that Problem (1) can be equiv-
alently reformulated based on the RST as follows [4]:

min
z,θ

{∑
n/∈K

Cn(zn)

∣∣∣∣ (ÃB̃Ã�)θ−z=p, 1�(p+z)=0,
|θTx(l)−θRx(l)|≤βl, 0≤zn≤Kn.

}
, (2)

where βl � fmax
l /bl, 1 ∈ R

N is an all-one vector, and Tx(l)
and Rx(l) represent the transmitting and receiving ends of
line l, respectively. Note that the generation-load balance
constraint 1�(p+ z) = 0 ensures that f0 ≡ 0, implying that
Problem (1) is equivalent to Problem (2) [4].

Step 2) An Interior-Point Algorithmic Framework Cou-
pled with Newton’s Method: Utilizing an interior-point ap-
proach [5], we can rewrite Problem (2) as follows:

Minimize gμ(y)
subject to My = d,

(3)

where y �
[
z1 · · · zN , θ1 · · · θN

]�
groups all variables; gμ(y) �

μ
∑

n/∈K Cn(zn)−
∑N

n=1(log(zn)+log(Kn−zn))−
∑L

l=1(log(βl−
θTx(l)+θRx(l))+log(βl+θTx(l)−θRx(l))) is an augmented objec-
tive function, where we apply a logarithmic barrier function
to all inequality constraints in Problem (2) and then ac-
commodate them into the objective function; and matrix M
and vector d groups all network topology and demand in-
formation, respectively (see [4] for details). In (3), μ > 0 is
the barrier parameter such that as μ gets large, the solution
of Problem (3) will approach the original solution of Prob-
lem (2). The equality-constrained formulation in (3) allows
us to employ Newton’s method to solve the Karash-Kuhn-
Tucker (KKT) system of (3). Starting from some initial
feasible solution y0, the (centralized) Newton’s method is
the following iterative scheme: yk+1 = yk + skΔyk, where
sk > 0 is the step-size in the kth iteration and Δyk denotes
the primal Newton direction, which can be computed as:

Δyk = −H−1
k (∇gμ(y

k) +MTwk), (4)

wk = (MH−1
k MT )−1(−MH−1

k ∇gμ(y
k)). (5)

where ∇gμ(y
k) and Hk denote the gradient vector and Hes-

sian matrix of gμ(·) evaluated at yk, respectively; wk con-
tains dual variables associated with My = d in the kth
iteration. Note that the scheme in (4)–(5) is a second-order
algorithmic framework since it exploits not only the first-
order gradient information ∇gμ(y

k), but also the second-
order Hessian information Hk. Hence, it enjoys a pow-
erful quadratic rate of convergence performance [6]. That
is, given a desired control precision ε, the distributed algo-
rithmic framework outlined in (4)–(5) converges in at most
log2 log2(Φ/ε) iterations, where Φ is some constant that de-
pends on the network topology and the objective function.

Step 3) RST-Based Decentralization: Lastly, the decen-
tralization of the scheme in (4)–(5) boils down to the dis-
tributed computations of H−1

k and (MH−1
k M�)−1, which

are challenging due to their non-separable structure. Fortu-
nately, by exploiting the nice upper triangular structure of

the RST incidence matrix Ã, we are able to develop a double
Sherman-Morrison-Woodbury (dSWM) distributed scheme
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Figure 1: The convergence process of the proposed
distributed second-order load shedding algorithm
with different choices of initial scaling factors.

for H−1
k and (MH−1

k M�)−1, which leads to the following
result on distributed computations [4]:

Theorem 1. The second-order scheme in (4)–(5) can be
decentralized by using the RST structure: the Newton di-
rection of load shed variables zn can be distributedly com-
puted at bus n with local information; the Newton direction
of phase angle variables θn can be distributedly computed
following any link-ordering on the RST in exactly N steps.

To identify a starting point, we let θ̂ be the phase an-
gles before load shedding. Our proposed initialization is to

shrink all θ̂-variables by the same scaling factor 0 < α < 1,

i.e., f = BAT (αθ̂). Clearly, there always exists a small
enough α such that f will not exceed any line capacity (i.e.,
in the interior of the new feasible domain).

To illustrate the convergence speed of our algorithm, we
use the IEEE 30-bus benchmark system [7] as an example.
For this 30-bus benchmark system, the convergence pro-
cesses of our proposed distributed second-order load shed-
ding algorithm with different choices of initial scaling factors
α are illustrated in Figure 1. We can see that, in all cases,
our distributed second-order method converges in less than
35 iterations, which demonstrates the powerful second-order
convergence speed.
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