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Abstract—Although femtocell deployments in residential build-
ings have been increasingly prevalent, femtocell deployment in
commercial building environments remains in its infancy. One
of the main challenges lies in the femtocell base stations (FBS)
placement problem, which is complicated by the buildings’ size,
layout, structure, and floor/wall separations. In this paper, we
investigate a joint FBS placement and power control optimization
problem in commercial buildings with the aim to prolong mobile
handsets’ battery lives. We first construct a mathematical model
that takes into account the unique floor attenuation factor (FAF)
and FBS installation restrictions in building environments. Based
on this model, we propose a novel two-step reformulation ap-
proach to convert the original mixed-integer nonconvex problem
(MINCP) into a mixed-integer linear program (MILP), which
enables the design of efficient global optimization algorithms. We
then devise a global optimization algorithm by utilizing the MILP
in a branch-and-bound framework. This approach guarantees
finding a global optimal solution. We conduct extensive numerical
studies to demonstrate the efficacy of the proposed algorithm.
Our mathematical reformulation techniques and optimization
algorithm offer useful theoretical insights and valuable tools for
future commercial building femtocell deployments.

I. INTRODUCTION

Studies on wireless usage show that, as smartphones, tablets,
and other data intensive mobile devices continue to prolifer-
ate, more than 50 percent of all voice calls and more than
70 percent of data traffic originate from indoors [1]. Ac-
cordingly, recent years have witnessed increasing acceptance
of femtocell systems as an important means to extend and
improve network coverage in building environments. Simply
speaking, femtocells are low-cost, small-sized base stations
that offer high quality voice/data services to indoor users.
As a result, not only can indoor users enjoy better network
coverage, the operators also benefit from huge savings due
to a reduced demand for constructing macrocell towers. This
“win-win” situation has sparked a great deal of interests in
many femtocell research topics, such as local area coverage
[2], [3], synchronization and interference management [4],
[5], [6], self-organization/configuration [7], [8], and access
and quality-of-service (QoS) control [9], [10], just to name
a few. Also, WCDMA, LTE, and WiMAX femtocells are
being standardized by 3GPP, 3GPP2, and WiMAX Forum
(IEEE 802.16), respectively [11], [12]. Meanwhile, residential
femtocell deployments have been commercially launched by
more than a dozen major operators worldwide [13].

While residential deployments have clearly positioned fem-
tocells as an enabling technology for future wireless commu-
nications, it is expected that the next wave of femtocell de-

ployment will target commercial building environments (e.g.,
large enterprises, big-box stores, dormitories, malls, airports,
and other public places) [13]. However, research progress
in this area remains rather limited. In particular, femtocell
base stations (FBS) placement problems have been largely
overlooked in commercial buildings. The need for femtocell
placement optimization is compelling due to the following two
reasons. First, the location of an FBS has a high impact on
the energy expenditure of each mobile handset (HS) under
its coverage. It is well-known that the uplink transmit power
of an HS depends heavily on the physical distance and
obstructions between the HS and its targeted FBS. Second, the
battery performance of current smartphone devices is far from
satisfactory (less than eight hours even under moderate use
[14], [15]). Increasing battery capacity proves to be difficult
because it is fundamentally limited by advances in material
sciences. As a result, FBS placement optimization becomes
one of the most effective ways to address the battery life issue
of mobile handsets.

However, FBS placement problems in commercial build-
ings are challenging. Unlike small-sized residential buildings,
commercial buildings range from small offices to large-sized
structures with different building layouts (e.g., open atriums,
contained offices, hallways, or basements) with various floor
and wall separations, which yield complex signal path loss
models and may require multiple FBSs. Also, there could be
special building safety codes/constraints that impose further
restrictions on the FBS locations. Due to the lack of results in
this area, the main objective of this work is to fill this gap and
to obtain a fundamental understanding of the FBS placement
problem in commercial building environments.

More specifically, in this paper, we focus on the joint
optimization of FBS placement to minimize the uplink trans-
mission power of each mobile HS, while ensuring network
coverage and meeting each HS’s QoS requirement. The main
contributions of this work are as follows:

• We construct a tractable mathematical model for joint
FBS placement and power control optimization in com-
mercial building environments. Our model takes into
account the unique floor attenuation factor (FAF) and
FBS installation restrictions in buildings.

• Based on the proposed model, we show that the joint
FBS placement and power control optimization problem
is a challenging mixed-integer nonconvex programming
problem (MINCP), for which no existing optimization
methods can be readily applied. To address the non-
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convexity and integrality difficulty, we propose a novel
two-step reformulation approach to transform the original
MINCP into an equivalent mixed-integer convex program
(MICP) and then into a mixed-integer linear program
(MILP). This two-step reformulation enables the design
of efficient global optimization algorithms.

• For the reformulated MILP problem, we propose a global
optimization approach that utilizes its linear relaxation
within a branch-and-bound framework, which guarantees
finding a global optimal solution. To demonstrate the effi-
cacy of our algorithmic procedures, we conduct extensive
computational studies. Our proposed modeling and math-
ematical optimization approaches offer useful theoretical
insights and practical tools for femtocell deployments in
commercial buildings.

The remainder of this paper is organized as follows. We
introduce our network model and problem formulation in
Section II. Section III and Section IV present the key com-
ponents of our proposed two-step reformulation approach.
Then, a solution procedure based on the branch-and-bound
framework using linear programming relaxations is presented
in Section V. Numerical results are presented in Section VI,
and Section VII concludes this paper with a summary and
recommendations for future research.

II. NETWORK MODEL AND PROBLEM FORMULATION

A. Network Model
We consider a femtocell network in a commercial building

with M FBSs. Here, we assume that M is large enough to
ensure network coverage. More detailed discussions on the
minimum required M can be found in Section V. To model
the random distribution of the mobile HS, we partition the
building into subregions and associate each subregion with an
“occupant probability,” as shown in Fig. 1. More specifically,
we partition the length and width of the building into L and
W units, respectively. Also, we let F denote the maximum
number of floors. Then, each subregion can be indexed by a
three-tuple (i, j, k), i = 1, . . . , L, j = 1, . . . ,W , and k =
1, . . . , F . The occupant probability of subregion (i, j, k) is
denoted by qijk ∈ [0, 1], where

L
∑

i=1

W
∑

j=1

F
∑

k=1

qijk = 1. (1)

We index the FBSs as FBS 1, . . ., FBS M . We assume that
the femtocell-to-femtocell and femtocell-to-macrocell interfer-
ences (including femtocell leakage [8]) are negligible under
some appropriate channel assignment/spectral management
schemes. There has been a large body of literature on femtocell
interference management (see, e.g., [4], [5], [6] and references
therein) and its discussion is beyond the scope of this paper.

Next, we derive the distance relationship between an FBS
and a subregion, which is more complex than the conventional
Euclidean distance due to the unique features in building
environments. First, since commercial buildings usually have
multiple floors, the coordinates of FBSs and HSs are in 3-
D space. We use (xm, ym, zm), m = 1, . . . ,M , to denote
the coordinates of the m-th FBS, which are to be optimized.
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Fig. 1. An illustration of a femtocell network with multiple FBSs and HSs
in a multi-floor commercial building. The building is partitioned into a set of
subregions, each of which is associated with an occupant probability.
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Fig. 2. The horizontal distance projection between FBS m and subregion
(i, j, k).

Also, we let γx and γy denote the length and width of each
subregion: γx = 1

Lxmax and γy = 1
W ymax, where xmax

and ymax denote the entire length and width of the building,
respectively.

We first consider the horizontal distance between FBS m
and subregion (i, j, k), as shown in Fig. 2. For an FBS to cover
every point in a subregion, the horizontal distance projection
between FBS m and subregion (i, j, k) is defined as the
distance between the FBS and the point in the subregion that
is furthest away from FBS m. For example, in Fig. 2, the point
in subregion (i, j, k) furthest away from FBS m is point B. It
is not difficult to verify that, in general, the x-axis and y-axis
projections of horizontal distance are |xm − (i− 1

2 )γx|+
1
2γx

and |ym − (j − 1
2 )γy|+

1
2γy , respectively.

Next, we consider the vertical distance. Due to the practical
use of building space, FBSs are usually required to be mounted
on the ceiling of each floor to avoid being obstructions.
To model this, we restrict the vertical coordinates zm to
be integer-valued and in the set {1, 2, . . . , F}. For example,
zm = 3 represents that FBS m is on the ceiling of the
third floor. Also, in reality, the HSs in each subregion are
approximately three to four feet above the ground of each floor
because of the average human height. Thus, we let η denote
the average height of an HS on each floor. We assume that the
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Fig. 3. The vertical distances between femtocell base stations and handsets.

height of each floor is h. Then, the vertical distance can be
computed as |(zm− k+1)h− η|. To verify the correctness in
the vertical direction, see the example as shown in Fig. 3. If
the FBS is on the fourth floor and the HS is on the first floor,
we have |(4 − 1 + 1)h − η| = 4h− η. On the other hand, if
the FBS is on the first floor and the HS is on the fourth floor,
we have |(1− 4 + 1)h− η| = 2h+ η.

Combining the horizontal and vertical distance projections,
the distance between FBS m and subregion (i, j, k), denoted
by d(m)

ijk , can be computed as

d(m)
ijk =

[

(|xm − (i −
1
2
)γx|+

1
2
γx)2+

(|ym − (j −
1
2
)γy|+

1
2
γy)2 + |(zm − k + 1)h− η|2

]
1
2

,

where i = 1, . . . , L, j = 1, . . . ,W , k = 1, . . . , F , and
m = 1, . . . ,M . Also, we let Pijk denote the uplink trans-
mission power of HSs in subregion (i, j, k). Due to the
transceiver hardware constraint, the transmission power of an
HS cannot exceed a certain upper limit. This can be modeled
as 0 ≤ Pijk ≤ Pmax, ∀i, j, k, where Pmax denotes the
maximum transmission power limit for the HS.

B. Wireless Signal Path Loss Modeling for Commercial Build-
ings

Since wall separations vary from one building to another in
commercial building environments, it is in general intractable
to account for every wall separation loss in path loss modeling
within the same floor. To address this difficulty, we adopt the
following equation to model path loss (in dBm) [16] within
the same floor:

Pr = Pt − Ld0 − 10α log10

(

d
d0

)

+ ζσ, (2)

where Pt and Pr are the transmission and received powers,
d represents the distance, α denotes the path loss exponent,
d0 is a short reference distance from the transmitter, and Ld0

represents the loss (dB) of signal for the reference distance
d0. In (2), ζσ is a zero-mean Gaussian random variable with
standard deviation σ, which models the log-normal shadowing
effect of path loss [16]. Since extensive measurement experi-
ments have been conducted to determine α for a large number

of partition types (see [16, Table 4.3]), this allows us to use
different values of α to model different buildings.

To incorporate the path loss between different floors, the
path loss model in (2) can be further augmented as [16]:

Pr = Pt − Ld0 − 10α log10

(

d
d0

)

+ ζσ − LFAF , (3)

where LFAF (in dB) denotes the path loss due to floor
attenuation factor (FAF), and where FAF is determined by
the external dimensions and materials of the building, as well
as by the type of construction methods used for the floors and
the external surroundings [17], [18], [16]. Moreover, the FAF
can be modeled as (in dB) [16]:

LFAF =
{

∆1 + (ϕ− 1)∆a, if ϕ ≥ 1,
0, if ϕ = 0, (4)

where ∆1 represents the FAF for a single floor separation, ∆a
represents the FAF for each additional floor, and ϕ denotes the
number of separating floors.

Ignoring ζσ for now and converting Eq. (3) to a linear scale,
we have the following result (due to limited space, we refer
readers to [19, Appendix A] for details of the proof).

Lemma 1. Denote Pijk and PRm as the transmission and
received power levels for the transmission between subregion
(i, j, k) and FBS m, respectively. Then, under the wireless
signal path loss model in commercial building environments
and upon converting PRm , Pijk , and Ld0 to a suitable linear
scale, the following relationship holds between Pijk and PRm:

PRm =
Pijk

C(zm, k)(d(m)
ijk )α∆|zm−k|

, ∀m = 1, . . . ,M, (5)

where ∆ is a constant that depends on the specific environ-
ment; C(zm, k) is a step function that depends on zm and k
and has the following structure:

C(zm, k) =
{

C0, if zm = k,
C1, if zm 6= k,

where C0 and C1 are constants that also depend on the specific
environment.

C. QoS Requirement Constraints
To reliably decode an HS’s transmission from subregion

(i, j, k) at a data rate that satisfies the HS’s rate requirement,
it is necessary that the uplink received power level at the FBS
should be above a certain threshold value. Let Pmin denote the
minimum power level (in dB). According to (3), the received
power is Gaussian (in dB). Hence, we use outage probability
as the QoS requirement, defined as Pr{Pr < Pmin}, where we
require this quantity to be less than or equal to a target value
β, i.e.,

Pr
{

Pt − Ld0 − 10α log10

(

d
d0

)

+ ζσ − LFAF < Pmin

}

≤ β.

For convenience, we let P̄ , Pt − Ld0 − 10α log10
(

d
d0

)

−
LFAF . Then, the above equation can be rewritten as:

Pr
{

Pr − P̄r

σ
<

Pmin − P̄r

σ

}

≤ β. (6)
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Note that Pr−P̄r

σ is a standard normal random variable. Hence,
the probability in (6) is simply Φ(Pmin−P̄r

σ ), where Φ(x) =
1√
2π

∫ x
−∞ e−

t2

2 dt is the cumulative distribution function (cdf)
of the standard normal distribution. Thus, the outage proba-
bility constraint in (6) can be written as Pmin−P̄r

σ ≤ Φ−1(β),
which in turn yields P̄r ≥ Pmin−σΦ−1(β). Letting P (σ,β)

min ,

Pmin − σΦ−1(β), we can obtain (in dB):

Pt − Ld0 − 10α log10

(

d
d0

)

− LFAF ≥ P (σ,β)
min . (7)

Further, based on the path loss model in Lemma 1, we have
(in linear scale)

Pijk

C(zm, k)(d(m)
ijk )α∆|zm−k|

≥ P (σ,β)
min , ∀i, j, k,m. (8)

By rearranging terms and letting A(zm, k) ,

C(zm, k)P (σ,β)
min =

{

A0 , C0P
(σ,β)
min if zm = k,

A1 , C1P
(σ,β)
min if zm 6= k,

we

can rewrite the QoS constraint in (8) as

A(zm, k)(d(m)
ijk )α∆|zm−k| − Pijk ≤ 0, ∀i, j, k,m. (9)

D. FBS Association Modeling

Unlike conventional wireless networks, the channel to the
nearest FBS may not be the best for a given subregion. This
is because the closest FBS could be separated by a floor and
hence could lead to a worse path loss due to FAF. Therefore,
we try not to define a specific rule for FBS association. Instead,
we model the FBS association problem as a part of the overall
joint FBS placement and power control optimization problem.
To this end, we first define the following binary variables:

π(m)
ijk =

{

1 if subregion (i, j, k) is associated with FBS m,
0 otherwise.

(10)
Then, the FBS association can be modeled as

M
∑

m=1

π(m)
ijk = 1, ∀i, j, k. (11)

Also, we need to modify the QoS constraints in (9) as
follows:

A(zm, w)π(m)
ijk (d(m)

ijk )α∆|zi−w| − Pijk ≤ 0, ∀i, j, k,m.
(12)

Hence, if π(m)
ijk = 1, then (12) is identical to the original QoS

constraint in (9). Otherwise, (12) reduces to Pijk ≥ 0, which
is trivially valid.

E. Problem Formulation

To reduce energy consumption and ensure fairness among
the HSs, our goal is to minimize the power consumption
of the HS in the subregion that transmits at the highest
weighted power level (weighted by occupant probability),
i.e., min {maxi,j,k(qijkPijk)}. For easier manipulation, we

rewrite the minimax objective function in an equivalent form
as minP , subject to P ≥ qijkPijk , ∀i, j, k. Incorporating other
constraints established earlier, we can formulate the joint FBS
placement and power control problem (FPPC) as follows:

FPPC:
Min. P (13)

s.t. P ≥ qijkPijk, ∀i, j, k, (14)

A(zm, k)π(m)
ijk (d(m)

ijk )α∆|zi−k|

−Pijk ≤ 0, ∀i, j, k,m, (15)
M
∑

m=1

π(m)
ijk = 1, ∀i, j, k, (16)

d(m)
ijk =

[

(|xm − (i−
1
2
)γx|+

1
2
γx)2

+(|ym − (j −
1
2
)γy|+

1
2
γy)2

+|(zm − k + 1)h− η|2
]

1
2 , ∀i, j, k,m, (17)

0 ≤ Pijk ≤ Pmax, π
(m)
ijk binary ∀i, j, k,m,

0 ≤ xm ≤ xmax, 0 ≤ ym ≤ ymax, ∀m,
1 ≤ zm ≤ F, ∀m, zm binary,

where the decision variables are [xm, ym, zm]T , d(m)
ijk , Pijk ,

and π(m)
ijk , ∀i, j, k,m.

Since FPPC involves integer variables π(m)
ijk and zm along

with nonconvex constraints in (15) and (17), this problem
is a mixed-integer nonconvex problem, which is NP-hard in
general [20]. Also, since (15) is highly unstructured, directly
solving FPPC is difficult and no standard optimization tools
can be readily applied. In the next two sections, we employ
a novel two-step reformulation approach to transform FPPC
into a mixed-integer linear program, which is much easier
to handle. Then, we propose a global optimization approach
that guarantees finding an optimal solution of the reformulated
problem.

III. REFORMULATION STEP ONE: FROM NONCONVEX

MODELING TO CONVEX MODELING

Note that the difficulty in solving Problem FPPC stems
from the term A(zm, k)π(m)

ijk (d(m)
ijk )α∆|zm−k| in (15) and the

nonconvexity in (17). Hence, our goal in this section is to
convexify the highly unstructured constraint (15) and the
nonconvex constraint in (17).

Reformulating the Distance Constraint in (17): We start
by manipulating the relatively simpler constraint (17). We first
let δ(m)

ijk , (d(m)
ijk )2, ∀i, j, k,m, so that the constraint in (17)

can be rewritten as

δ(m)
ijk = (|xm−(i−

1
2
)γx|+

1
2
γx)2+(|ym−(j−

1
2
)γy|+

1
2
γy)2

+ ((zm − k + 1)h− η)2, ∀i, j, k,m. (18)

Accordingly, (15) becomes:

A(zm, k)π(m)
ijk (δ(m)

ijk )
α
2 ∆|zi−k| − Pijk ≤ 0. (19)
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Then, we have the following result:

Lemma 2. The constraint in (18) can be equivalently replaced
by

(|xm − (i −
1
2
)γx|+

1
2
γx)2 + (|ym − (j −

1
2
)γy|+

1
2
γy)2+

((zm − k + 1)h− η)2 − δ(m)
ijk ≤ 0, ∀i, j, k,m. (20)

Moreover, the inequality in (20) automatically holds as an
equality at an optimal solution.

Proof: Consider Problem FPPC with (15) and (17) re-
spectively replaced by (19) and (20), and suppose that (20)
holds as a strict inequality at optimality for some i, j, k,m.
Then, by decreasing the values of δ(m)

ijk to make (20) hold as
an equality, we still maintain feasibility in (19), and hence
retain the optimality of the revised solution.

It is not difficult to verify that (20) is convex. However, we
note that the left-hand-side of (20) involves absolute values,
which are non-differentiable and remains cumbersome for
designing optimization algorithms. To address this issue, we
let Xmi , |xm−(i− 1

2 )γx| and Ymj , |ym−(j− 1
2 )γy|. Then,

Eq. (20) can be rewritten as the following group of constraints:










(Xmi + 1
2γx)

2 + (Ymj + 1
2γy)

2+
(hzm − ((k − 1)h+ η))2 − δ(m)

ijk ≤ 0,
|xm − (i− 1

2 )γx| = Xmi, |ym − (j − 1
2 )γx| = Ymj .

(21)

It can be seen in (21) that the first constraint is a quadratic
convex constraint. Next, we rewrite the second constraint as
follows: |xm− (i− 1

2 )γx| ≤ Xmi, which is based on the same
argument as in Lemma 2. This can be further linearized as
xm − (i − 1

2 )γx ≤ Xmi and −xm + (i − 1
2 )γx ≤ Xmi. The

third constraint can also be rewritten in the same fashion. After
rearranging terms, we arrive at the following result:

Lemma 3. The distance constraint (17) can be convexified
as:

(Xmi +
1
2
γx)2 + (Ymj +

1
2
γy)2+

(hzm − ((k − 1)h+ η))2 − δ(m)
ijk ≤ 0, (22)

xm −Xmi ≤ (i −
1
2
)γx, and xm +Xmi ≥ (i−

1
2
)γx, (23)

ym − Ymj ≤ (j −
1
2
)γy , and ym + Ymj ≥ (j −

1
2
)γy. (24)

Reformulating the Minimum Received Power Constraint
in (15): Next, we reformulate constraint (15), which is more
involved than (17). Recall that we have restated (15) as (19) by
the change of variables. We now linearize (19) with respect to
the binary variables π(m)

ijk , which leads to the following result:

Lemma 4. Constraint (15) is equivalent to the following
alternative representation:

A(zm, k)(δ(m)
ijk )

α
2 ∆|zm−k|

− (1− π(m)
ijk )U (m)

ijk − Pijk ≤ 0, ∀i, j, k,m, (25)

where U (m)
ijk is some upper bound for

A(zm, k)(δ(m)
ijk )

α
2 ∆|zm−k|.

Lemma 4 can be easily proven by considering π(m)
ijk ∈

{0, 1}, and verifying the logical equivalence between (25) and
(19). In Lemma 4, a valid value for the upper bound U (m)

ijk can
be chosen as

U (m)
ijk , P σ,β

minmax{C0, C1}(δ̄ijk)
α
2 ∆max{k−1,F−k},

where δ̄ijk is an upper bound for δ(m)
ijk . Recall that xmax and

ymax denote the length and width of the building, respectively.
Then, δ̄ijk can be computed as

δ̄ijk = max{(iγx)2, (L − i+ 1)2γ2
x}

+max{(jγy)2, (W − j + 1)2γ2
y}

+max{((2 − k)h− η)2, ((F − k + 1)h− η)2}.

Next, to further simplify the nonconvex constraint (25), we
introduce two new variables ν(m)

ijk , (δ(m)
ijk )

α
2 and µmk ,

∆|zm−k| and rewrite (25) as the following three simpler
nonconvex constraints:































A(zm, k)ν(m)
ijk µmk−

(1− π(m)
ijk )U (m)

ijk − Pijk ≤ 0, ∀i, j, k,m,

ν(m)
ijk = (δ(m)

ijk )
α
2 , ∀i, j, k,m,

µmk = ∆|zm−k|, ∀m, k.

(26)

Now, the reformulation task of (15) boils down to convex-
ifying these three nonconvex constraints. First, consider the
nonconvex constraint ν(m)

ijk = (δ(m)
ijk )

α
2 in (26). Following the

same approach as in Lemma 2, we can rewrite this as:

ν(m)
ijk ≥ (δ(m)

ijk )
α
2 , ∀i, j, k,m. (27)

Note that the inequality constraint in (27) is now convex since
the path loss exponent α is greater than 2 in practice.

To simplify and convexify the remaining two nonconvex
constraints in (26), we first employ the following trick to
represent the general integer variable zm via 0–1 variables:

zm =
F
∑

l=1

lλml, and
F
∑

l=1

λml = 1, ∀m, (28)

where all λml–variables are binary (i.e., λml ∈ {0, 1}). Using
(28), it is clear that the third nonconvex constraint in (26) (i.e.,
µmk = ∆|zm−k|) is logically equivalent to

µmk =
F
∑

l=1

λml∆|l−k|, (29)

which is linear with respect to λml–variables (because all
the ∆|l−k|-values are constants). Based on this alternative
representation of µmk, we have the following result for con-
vexifying the first constraint in (26) (see [19, Appendix B] for
details of the proof):
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Lemma 5. Let g(ml)
ijk , ν(m)

ijk λml. Then, the first constraint in
(26) can be linearized as

A1

F
∑

l=1,l 6=k

∆|l−k|g(ml)
ijk + A0g

(mk)
ijk −

(1− π(m)
ijk )U (m)

ijk − Pijk ≤ 0, ∀i, j, k,m. (30)

The final step toward a convex reformulation is to convexify
the bilinear term g(ml)

ijk =ν(m)
ijk λml introduced in Lemma 5. For

this purpose, we apply the special structured Reformulation-
Linearization-Technique of Sherali et al. [21] to derive the
following result (see [19, Appendix C] for proof details):

Lemma 6. Given (28) with λml ∈ {0, 1}, ∀m, l, and given
bounds 0 ≤ ν(m)

ijk ≤ ν̄(m)
ijk , the bilinear equation g(ml)

ijk =

ν(m)
ijk λml holds if and only if

g(ml)
ijk ≥ 0, g(ml)

ijk − ν̄(m)
ijk λml ≤ 0, (31)

F
∑

l=1

g(ml)
ijk − ν(m)

ijk = 0, ∀i, j, k,m. (32)

It is worth pointing out that Lemma 6 implies that (31) and
(32) with the second constraint in (28) and λ ≥ 0 effectively
construct the convex hull of the bilinear relationship in g(ml)

ijk .
This allows for the tightest convex relaxation for the original
problem and will significantly speed up the branch-and-bound
process we propose later in Section V (see [19, Appendix C]
for more detailed discussions).

Putting all the previous derivations together, we obtain the
following equivalent reformulation of Problem FPPC (denoted
as R-FPPC):

R-FPPC:
Min P
s.t. a) RLT reformulation for minimum received power

constraints: (27), (28), (30), (31), (32),
b) Distance reformulation constraints: (22), (23), (24),
c) FBS association constraint: (11).

In R-FPPC, all constraints are either linear or convex,
and so Problem R-FPPC is a mixed-integer convex program
(MICP). Hence, it can readily be solved by a branch-and-
bound (BB) process (see Section III) coupled with its convex
relaxation. However, to design a more efficient and robust
global optimization algorithm, in the next section, we will go
one step further to simplify R-FPPC.

IV. REFORMULATION STEP TWO: LINEARIZATION OF THE

NONLINEAR MODEL

As mentioned earlier, although R-FPPC is an MICP and can
be solved by BB, the convex relaxation of R-FPPC remains a
nonlinear program, which in general may not be solved as effi-
ciently as a linear program of similar size. This motivates us to
consider approximating R-FPPC using a linear approximation,
which further transforms the problem into a mixed-integer

piecewise

approximation
linear 

ν

ν = δ
α
2

δ3δ2

δ
α
2 − ν ≤ 0

δ1 = 0
δ

δSδ−1 δSδ = δ̄

Fig. 4. An illustration of the piece-wise linear approximation for constraint
(δ(m)

ijk )
α
2 − ν(m)

ijk ≤ 0 (dropping indices i, j, k,m for notational simplicity).

linear program (MILP). The fundamental rationale behind
this approach is that MILP has been extensively explored by
the operations research community for decades and powerful
algorithms, techniques, and codes exist for solving large-scale
problems [20].

More specifically, our approach is to use piecewise linear
approximation (PLAP) functions to replace all nonlinear con-
straints in R-FPPC. To this end, let us first consider the convex
constraint (δ(m)

ijk )
α
2 − ν(m)

ijk ≤ 0. For notational simplicity, we
drop the indices i, j, k, and m and rewrite the constraint in
the following form:

(δ)
α
2 − ν ≤ 0. (33)

Since we are only interested in values of δ over the interval
[0, δ̄], we can partition [0, δ̄] into Sδ − 1 smaller intervals via
grid points 0 = δ1, δ2, . . . , δSδ

= δ̄, as shown in Fig. 4.1

Intuitively, the accuracy of the approximation improves as the
number of grid points increases. Indeed, it can be shown that
the error introduced by PLAP is bounded and can be made
arbitrarily small if the number of grid points goes to infinity
[19]. In our numerical studies, we will also study the adequate
number of grid points to achieve a close approximation.

Mathematically, the region obtained by replacing (δ)
α
2 −

ν ≤ 0 with PLAP can be written via the following linear
constraints:

Sδ
∑

s=1

τs(δs)
α
2 − ν ≤ 0,

Sδ
∑

s=1

τsδs = δ, and
Sδ
∑

s=1

τs = 1, (34)

where τs ≥ 0, for s = 1, . . . , Sδ and at most two τs-variables
are positive and they should be adjacent. However, noting that
ν = (δ)

α
2 is strictly convex for α > 2, we can show that

this adjacency requirement can be discarded as stated in the
following proposition:

Proposition 7. Consider the PLAP of Problem R-FPPC with
constraints in (34). Then, for each constraint in the form of
(33), at most two τs-variables are positive and they must
be adjacent. Moreover, each δ =

∑Sδ

s=1 τsδs is feasible to
Problem R-FPPC.

1Note that Fig. 4 is just for illustrative purposes and the grid points may or
may not be equidistant, and different δ-variables may have different numbers
of intervals.
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Proposition 7 can be proved by contradiction and exploiting
the convexity of (33). Due to limited space, we relegate the
details of the proof to [19, Appendix D].

Next, we construct a piecewise linear approximation for the
nonlinear constraint (Xmi+ 1

2γx)
2 +(Ymj + 1

2γy)
2 +(hzm−

((k − 1)h+ η))2 − δ(m)
ijk ≤ 0. We first expand this constraint

as follows:

Bmi +Dmj + h2Em + γxXmi + γyYmj

− 2h((k − 1)h+ η)zm − δ(m)
ijk

≤ −
1
4
γ2
x −

1
4
γ2
y − ((k − 1)h+ η)2, (35)

X2
mi −Bmi ≤ 0, Y 2

mj −Dmj ≤ 0, z2m − Em ≤ 0, (36)

where we have again changed the equality relationships Bmi=
X2

mi, Dmj =Y 2
mj , and Em= z2m into inequality relationships

based on the same reason as in Lemma 2. Then, we can use
the identical PLAP technique for constraints in (36). To this
end, let SX , SY , and Sz denote the numbers of grid points
for the Xmi–, Ymj–, and zm–variables, respectively, and let
Xmi,1, . . . , Xmi,SX , Ymj,1, . . . , Ymj,SY , and zm,1, . . . , zm,Sz

denote the grid points for the Xmi–, Ymj–, and zm–variables,
respectively. Let ξ(X)

mi,1, . . . , ξ
(X)
mi,SX

, ξ(Y )
mj,1, . . . , ξ

(Y )
mj,SY

, and

ξ(z)m,1, . . . , ξ
(z)
m,Sz

denote the non-negative weights correspond-
ing to the Xmi–, Ymj–, and zm–variables, respectively. Then,
the PLAP for (36) are given as follows (dropping indices i, j, k
and m for notational simplicity):
SX
∑

s=1

ξ(X)
s (Xs)2 ≤ B,

SX
∑

s=1

ξ(X)
s (Xs) = X,

SX
∑

s=1

ξ(X)
s = 1; (37)

SY
∑

s=1

ξ(Y )
s (Ys)2 ≤ D,

SY
∑

s=1

ξ(Y )
s (Ys) = Y,

SY
∑

s=1

ξ(Y )
s = 1; (38)

Sz
∑

s=1

ξ(z)s (zs)2 ≤ E,
Sz
∑

s=1

ξ(z)s (zs) = z,
Sz
∑

s=1

ξ(z)s = 1. (39)

Finally, replacing all nonlinear constraints in R-FPPC by
the piecewise linear approximations in (34), (35), (37), (38),
and (39), we have the final MILP problem as follows:

R-FPPC-MILP:
Min P

s.t. a) RLT reformulation for minimum received power
constraints: (28), (30), (31), (32),

b) PLAP for Constraint (27) : (34),
c) PLAP for Constraint (22) : (35), (37), (38), (39),
b) Absolute value reformulation constraints: (23), (24),
e) FBS association constraint: (11).

V. A SOLUTION PROCEDURE BASED ON A
BRANCH-AND-BOUND FRAMEWORK AND LINEAR

PROGRAMMING RELAXATIONS

Using the two-step reformulations, we have arrived at an
equivalent problem R-FPPC-MILP, which positions us to de-
vise a solution procedure based on the branch-and-bound (BB)

framework, which guarantees finding a global optimal solution
[20]. In this section, we provide an overview on using BB to
solve R-FPPC-MILP. For a comprehensive understanding of
the BB procedure, we refer readers to [20] for more details.

The BB solution procedure proceeds iteratively as follows.
For R-FPPC-MILP, during the initial step, a lower bound on
the objective value is obtained by solving its linear program-
ming relaxation (LPR). Because of the relaxation, the values of
π(m)
ijk and λml in the LPR solution are likely fractional. Thus,

we conduct a local search (e.g., through judicious rounding)
to recover a feasible solution from the LPR solution. This
feasible solution provides an incumbent solution to R-FPPC-
MILP and an upper bound on the objective value. Next, we
branch the problem into two subproblems. The LPR of each
of these two subproblems is then solved and local search is
again used to obtain the lower and upper bounds. This step
completes an iteration.

After an iteration, if the gap between the current upper
bound and the smallest lower bound (among all the sub-
problems) is larger than some predefined desired error ε,
we perform another iteration on the subproblem having the
smallest lower bound. Also, during each iteration, we can
remove those subproblems whose lower bounds have a gap
less than ε compared to the global upper bound (since further
branching on these subproblems could not yield improved
feasible solutions), thus controlling the increase in the total
number of subproblems in the system. The BB iterations
continue until the smallest upper bound and the smallest lower
bound among all the subproblems are within ε. Therefore, the
best feasible solution is (1 − ε)-optimal. We summarize the
BB/LPR procedure in Algorithm 1.

Finally, we point out that the BB/LPR algorithm can be
used to determine the minimum required value of M to ensure
coverage. For a given network, we can start from a small value,
say M = 1 or 2. If M is not large enough, BB/LPR will detect
the infeasibility of the underlying problem. Then, we can do a
bisection search on M and repeat BB/LPR until the problem
becomes feasible (i.e., of complexity O(log(min{M}))).

VI. NUMERICAL RESULTS

In this section, we conduct numerical studies to demonstrate
the efficacy of our proposed optimization approach. First,
we use a building with 36 subregions as an example. As
shown in Fig. 5, the building’s length, width, and floor
height are 100, 60, and 3 meters, respectively. The occupant
probabilities are listed in Table I and also illustrated in Fig. 5:
the darker a subregion, the higher its occupant probability.
The transmission power limit of each handset is 1 W. The
minimum received power threshold for each handset is -80
dBm. The path loss exponent is 3.5. The shadowing effect
deviation is 5 dB. Using our proposed optimization approach,
the maximum weighted transmission power of the handsets is
minimized to 0.0028 W. As shown in Fig. 5, the optimal FBS
locations are: FBS1: (x1 = 87.5, y1 = 30.2, z1 = 3), FBS2:
(x2 = 24.7, y2 = 30.7, z2 = 3), FBS3: (x3 = 75.7, y3 =
30.8, z3 = 2), FBS4: (x4 = 22.8, y4 = 28.1, z4 = 2), FBS5:
(x5 = 66.8, y5 = 19.9, z5 = 1), and FBS6: (x6 = 13.1, y6 =
31.2, z6 = 1). The optimal association relationship for each
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Algorithm 1 BB/LPR Solution Procedure
Initialization:
1. Let the optimal solution ψ∗ = ∅ and the initial upper bound UB = ∞.
2. Let the initial problem list contain only the original problem, denoted by
P1.

3. Construct and solve the linear programming relaxation. Denote the
solution to this relaxation as ψ̂1 and its objective value as the lower
bound LB1.

Main Loop:
4. Select a problem Pz that has the smallest lower bound (designated as
LB) among all problems in the problem list.

5. Find, if necessary, a feasible solution ψz via a local search algorithm for
Problem Pz . Denote the objective value of ψz by UBz .

6. If UBz < UB, then let ψ∗ = ψz and UB = UBz . If LB ≥ (1−ε)UB
then stop with the (1−ε)-optimal solution ψ∗; else, remove all problems
Pz′ having LBz′ ≥ (1 − ε)UB from the problem list.

7. Select a binary variable (π or λ) and branch on the dichotomy of its value
being 0 or 1.

8. Remove the selected problem Pz from the problem list, and construct
two new problems Pz1 and Pz2 based on the foregoing branching step.

9. Compute two new lower bounds LBz1 and LBz2 by solving the linear
programming relaxations of Pz1 and Pz2, respectively.

10. If LBz1 < (1 − ε)UB then add Problem Pz1 to the problem list. If
LBz2 < (1 − ε)UB then add Problem Pz2 to the problem list.

11. If the problem list is empty, stop with the (1 − ε)–optimal solution ψ∗ .
Otherwise, go to Step 4.

TABLE I
THE OCCUPANT PROBABILITIES OF THE 36 SUBREGIONS IN FIG. 5.

(i, j, k) qijk (i, j, k) qijk (i, j, k) qijk
(1, 1, 1) 0.047 (1, 1, 2) 0.058 (1, 1, 3) 0.002
(1, 2, 1) 0.027 (1, 2, 2) 0.011 (1, 2, 3) 0.008
(1, 3, 1) 0.024 (1, 3, 2) 0.040 (1, 3, 3) 0.034
(2, 1, 1) 0.026 (2, 1, 2) 0.037 (2, 1, 3) 0.032
(2, 2, 1) 0.050 (2, 2, 2) 0.064 (2, 2, 3) 0.001
(2, 3, 1) 0.001 (2, 3, 2) 0.033 (2, 3, 3) 0.009
(3, 1, 1) 0.020 (3, 1, 2) 0.045 (3, 1, 3) 0.003
(3, 2, 1) 0.031 (3, 2, 2) 0.014 (3, 2, 3) 0.003
(3, 3, 1) 0.033 (3, 3, 2) 0.031 (3, 3, 3) 0.018
(4, 1, 1) 0.050 (4, 1, 2) 0.001 (4, 1, 3) 0.031
(4, 2, 1) 0.007 (4, 2, 2) 0.057 (4, 2, 3) 0.043
(4, 3, 1) 0.012 (4, 3, 2) 0.054 (4, 3, 3) 0.046

subregion is also shown in Fig. 5. As expected, due to FAF
effect, not all subregions are associated with its closest FBS.

For our proposed PLAP technique, it is interesting to see
how many grid points are needed to achieve a close approx-
imation to the original R-FPPC problem. For the network in
Fig. 5, we adopt the following rule for the grid point values:
SX = SY = Sz = S and Sδ = 10S. We vary S from 2
(i.e., no intermediate grid point) to 40 and the results are
shown in Fig. 6. We can see that, as S increases, the PLAP
objective value rapidly converges to the original problem. In
this example, the PLAP objective value is near optimal when
S ≥ 10. Hence, in the subsequent numerical studies, we set
S = 40, which guarantees a negligible approximation error
almost surely.

Next, we examine the efficiency and the scaling of the
running time of our proposed algorithm as the number of
subregions increases. The size of the building and wireless
channel/transceivers parameters are the same as in the previous
example. We increase the number of subregions as follows: 6
(2 × 1× 3), 12 (2 × 2× 3), 18 (3 × 2 × 3), 24 (4 × 2 × 3),
30 (5× 2× 3), and 36 (4× 3× 3). For each setting, the run-

Fig. 5. The optimal FBS locations and the association relationship for each
subregion in a 20-subregion building.
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Fig. 6. The objective value with PLAP converges as the grid point number
parameter S increases.

time is obtained by averaging over 50 randomly generated
examples. The results are shown in Fig. 7, which depicts the
y-axis in both linear and log scale. For comparative purposes,
we plot the BB run-time with and without PLAP. In both
cases, the run-time increases roughly exponentially, which is
an expected phenomenon when searching for global optimal
solutions for mixed-integer programs. However, it can be seen
that with PLAP, the increase of run-time is much slower than
that without PLAP. This exhibits the beneficial effect of our
proposed PLAP approach.

As mentioned earlier, our BB/LPR algorithm can also be
used to determine the minimum required number of FBSs to
ensure network coverage. As an example, here we study how
the minimum required number of FBSs changes as the wireless
channel parameters vary. Again, the size of the buildings used
in this simulation remains the same as before. We study two
settings: 1) fix the path loss exponent α to 3.5 and vary the
shadowing effect deviation σ from 1 dB to 8 dB (i.e., channels
fluctuate more and more); and 2) fix the shadowing effect
deviation σ to 5 dB and vary the path loss exponent from 2 to
5 (i.e., signals attenuate faster and faster). For each case, the
result is obtained by averaging over 50 randomly generated
examples. The results are shown in Fig. 8. We can see that
when σ varies from 1 dB to 8 dB, the minimum required



9

 6 (2x1x3) 12 (2x2x3) 18 (3x2x3) 24 (4x2x3) 30 (5x2x3) 36 (4x3x3)
0

500

1000

1500

2000
Linear scale

Number of Subregions

R
un

t−
tim

e 
(s

ec
)

 

 
Without PLAP
With PLAP

6 (2x1x3) 12 (2x2x3) 18 (3x2x3) 24 (4x2x3) 30 (5x2x3) 36 (4x3x3)
10

0

10
2

10
4

Log scale

Number of Subregions

R
un

−t
im

e 
(s

ec
)

 

 
Without PLAP
With PLAP

Fig. 7. The scaling of run-time with respect to the number of subregions.
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Fig. 8. The scaling of minimum number of FBSs for network coverage as
the path loss exponent and the shadowing effect deviation grow.

number of FBSs increases from 3 to 6. Likewise, when α
increases from 2 to 5, the minimum required number of FBSs
increases from 3 to 9.

VII. CONCLUSION

In this paper, we studied a joint femtocell base station
(FBS) placement and power control optimization problem
for commercial buildings with the aim to prolong mobile
handsets’ battery lives. We constructed a mathematical model
that considers the floor attenuation factor and FBS location
restrictions in building environments. Based on this model,
we proposed a novel two-step reformulation technique to
transform the original mixed-integer nonconvex problem into
a mixed-integer linear program. This reformulation technique
led to an efficient global optimization algorithm based on a
branch-and-bound framework with linear programming relax-
ations, which guarantees finding a global optimal solution.
Moreover, our numerical studies showed that the run-time
for the proposed algorithm scales slowly with respect to the
number of subregions in a building. We note that femtocell
placement in commercial buildings is an important and yet

under-explored area. This paper offers both useful theoret-
ical insights and practical design tools for future femtocell
planning in commercial buildings. Possible future directions
include to study the placement problem in two-tier femtocell
networks, to consider joint spectral management and place-
ment optimization, and to develop fast approximation algo-
rithms with provable performance guarantees (e.g., constant-
factor approximation).
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