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Abstract—Recent advances of wireless communication tech-
nologies have enabled many new applications in the building
industry. However, restrictions such as the lack of wireless
network access and poor network coverage hinder the broad
implementation of these technologies in 3D building environments
and construction sites. One of the main challenges lies in the
access point (AP) placement problem, which is complicated by
the buildings’ size, layout, structure, and floor/wall separations.
In this paper, we investigate a joint BS placement and power
control optimization problem in buildings with the aim to prolong
mobile handsets’ battery lives. We first construct a mathematical
model that takes into account the unique floor attenuation factor
(FAF) and BS installation restrictions in building environments.
Based on this model, we propose a novel two-step reformulation
approach to convert the original mixed-integer nonconvex prob-
lem (MINCP) into a mixed-integer linear program (MILP), which
enables the design of efficient global optimization algorithms. We
then devise a global optimization algorithm by utilizing the MILP
in a branch-and-bound framework. This approach guarantees
finding a global optimal solution. We conduct extensive numerical
studies to demonstrate the efficacy of the proposed algorithm.
Our mathematical reformulation techniques and optimization
algorithm offer useful theoretical insights and valuable tools for
future wireless network deployments in buildings.

I. INTRODUCTION

Wireless technologies [e.g., Wi-Fi, Zigbee, Radio Frequency
Identification (RFID), etc.] have advanced rapidly during the
past decade, leading to a large number of emerging applica-
tions [1]. As a result, recent years have seen a growing trend of
applying wireless technologies in building environments and
construction sites, where a wired communication infrastructure
may be unavailable, limited, difficult to set up, or undesirable
due to the lack of mobility. Specifically, wireless networking
technologies can be used for monitoring and managing struc-
tural health, environment, and building energy consumption
during the life cycle of constructed facilities [2], [3], [4],
[5], [6]. The existing or potential jobsite applications include,
but may not be limited to, real-time activity monitoring and
coordination [7], [8], [9], location-aware information systems
and services [10], [11], resource management and tracking
[12], [13], and safety monitoring and prevention [14], [15],
[16].

Despite the aforementioned promising potentials, progress
toward applying wireless technologies to the building industry
has been slow. In addition to cost and interoperability issues
with existing hardware and software, the limited availability
of onsite wireless networks has become a main obstacle that

prevents and limits contractors’ investment in mobile devices
[17]. Indeed, designing and maintaining a high quality network
infrastructure onsite is challenging due to the following two
factors:

First, the complex and dynamic building or construction
environments have a compound impact on wireless communi-
cation channels. Construction sites consist of different zones
for office trailers, transportation, material lay-downs, building
structures, etc. Also, the site conditions evolve in different
construction phases: from excavation, to portion of structures
erected, and to multiple floors, roof and exterior/interior walls
built. Each zone in different construction phases may have
its unique characteristics that either positively or negatively
affect the setup and performance of wireless networks. For
example, the structural members and interior partitions of a
built structure will cause signal path loss of indoor wireless
channels, affecting reliable wireless connections and full-site
network coverage. Also, different built structures (e.g., roads,
bridges, factory plants, and high-rise buildings) would yield
different signal path loss patterns and multi-path fading effects.
As a result, it is much more difficult to offer wireless network
coverage for a high-rise building than for a highway due to
the fundamental difference between a 3D indoor obstructed
environment and a 2D linear outdoor free space.

The second main factor that hinders the adoption and
extensive use of wireless technologies is the longevity of
the existing wireless mobile devices. So far, most wireless
sensors, RFID tags, smartphones, and other mobile computing
devices are powered by batteries. Due to their limited energy
storage, it is apparent that the battery lifetime performance
of these mobile devices would become an important issue
for their sustained operations in buildings, civil infrastructures
(e.g., bridges with embedded wireless sensors), or on jobsites.
Among many factors that affect the battery lifetime of mobile
devices, wireless communications account for a significant
portion of the total energy budget. Although there have been
a few attempts to alleviate this issue by using self-powered
wireless sensors [4] or photovoltaic cell battery [18], how to
prolong network lifetime through optimal network infrastruc-
ture design remains one of key technical challenges.

So far, research on optimizing network infrastructure to
minimize mobile devices’ energy consumption in build-
ing/construction environments is scarce. Existing research on
wireless network infrastructure optimization has mainly fo-



cused on outdoor cellular networks [19], [20] and wireless
sensor networks [21], [22], [23]. Further, among the limited
work on in-building wireless networks, researchers mainly
focus on performance metrics that are not related to mobile
device energy minimization. These include network coverage
[24], [25], [26], [27], channel assignment/load balancing [28],
[29], bit error rate minimization [30], [31], and throughput
maximization [32], [33], [34].

It should be noted that in practice, designing a wireless
network with satisfactory AP locations is usually performed by
using onsite survey and measurements, which are not only time
consuming but also cost-prohibitive. As a result, measurements
are usually limited to several selected locations [35]. These
difficulties make the use of wireless design software tools
a much more convenient and attractive solution for optimal
network design. Although some commercial software tools
[e.g., Signal-IQ [36]] are already available for in-building
path loss predictions, they are mostly used for computing the
minimum number of APs required for providing full network
coverage, but not for a rigorous energy minimization for
wireless and mobile devices.

To fill this gap, this work investigates the problem
of wireless network infrastructure optimization in build-
ing/construction environments to prolong battery lifetime of
mobile devices. The main result and contribution of this work
is the development of a series of powerful global optimization
techniques, which further yields an advanced software tool.
This software tool is capable of determining optimal access
point (AP) locations in site-specific and/or goal-oriented net-
works to minimize power consumption of mobile devices,
while offering the required network coverage. It is applicable
for the deployments of several popular types of wireless net-
works found in building/construction environments, including
wireless local area networks (WLAN), ZigBee-based sensor
networks, etc.

II. NETWORK MODEL AND PROBLEM FORMULATION

A. Network Model

We consider a wireless network in a building with M
APs. Here, we assume that M is large enough to ensure
network coverage. More detailed discussions on the minimum
required M can be found in Section V. To model the random
distribution of the mobile HS, we partition the building into
subregions and associate each subregion with an “occupant
probability,” as shown in Fig. 1. More specifically, we partition
the length and width of the building into L and W units,
respectively. Also, we let F denote the maximum number
of floors. Then, each subregion can be indexed by a three-
tuple (i, j, k), i = 1, . . . , L, j = 1, . . . ,W , and k = 1, . . . , F .
The occupant probability of subregion (i, j, k) is denoted by
qijk ∈ [0, 1], where

L∑
i=1

W∑
j=1

F∑
k=1

qijk = 1. (1)

We index the APs as AP 1, . . ., AP M .

q521

AP3

1 2 3 4 5

1

2

3

4

1/F

2/F

3/F

AP1

AP2

Fig. 1. An illustration of a wireless network infrastructure with multiple APs
and HSs in a multi-story building.
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Fig. 2. The horizontal distance projection between AP m and subregion
(i, j, k).

Next, we derive the distance relationship between an AP
and a subregion, which is more complex than the conventional
Euclidean distance due to the unique features in building
environments. First, since commercial buildings usually have
multiple floors, the coordinates of APs and HSs are in 3-
D space. We use (xm, ym, zm), m = 1, . . . ,M , to denote
the coordinates of the m-th AP, which are to be optimized.
Also, we let γx and γy denote the length and width of each
subregion: γx = 1

Lxmax and γy = 1
W ymax, where xmax

and ymax denote the entire length and width of the building,
respectively.

We first consider the horizontal distance between AP m
and subregion (i, j, k), as shown in Fig. 2. For an AP to cover
every point in a subregion, the horizontal distance projection
between AP m and subregion (i, j, k) is defined as the distance
between the AP and the point in the subregion that is furthest
away from AP m. For example, in Fig. 2, the point in
subregion (i, j, k) furthest away from AP m is point B. It
is not difficult to verify that, in general, the x-axis and y-axis
projections of horizontal distance are |xm − (i− 1

2 )γx|+
1
2γx

and |ym − (j − 1
2 )γy|+

1
2γy , respectively.

Next, we consider the vertical distance. Due to the practical
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Fig. 3. The vertical distances between APs and handsets.

use of building space, APs are usually required to be mounted
on the ceiling of each floor to avoid being obstructions.
To model this, we restrict the vertical coordinates zm to
be integer-valued and in the set {1, 2, . . . , F}. For example,
zm = 3 represents that AP m is on the ceiling of the third floor.
Also, in reality, the HSs in each subregion are approximately
three to four feet above the ground of each floor because of
the average human height. Thus, we let η denote the average
height of an HS on each floor. We assume that the height of
each floor is h. Then, the vertical distance can be computed as
|(zm − k + 1)h− η|. To verify the correctness in the vertical
direction, see the example as shown in Fig. 3. If the AP is
on the fourth floor and the HS is on the first floor, we have
|(4− 1 + 1)h− η| = 4h− η. On the other hand, if the AP is
on the first floor and the HS is on the fourth floor, we have
|(1− 4 + 1)h− η| = 2h+ η.

Combining the horizontal and vertical distance projections,
the distance between AP m and subregion (i, j, k), denoted
by d

(m)
ijk , can be computed as

d
(m)
ijk =

[
(|xm − (i− 1

2
)γx|+

1

2
γx)

2+

(|ym − (j − 1

2
)γy|+

1

2
γy)

2 + |(zm − k + 1)h− η|2
] 1

2

,

where i = 1, . . . , L, j = 1, . . . ,W , k = 1, . . . , F , and
m = 1, . . . ,M . Also, we let Pijk denote the uplink trans-
mission power of HSs in subregion (i, j, k). Due to the
transceiver hardware constraint, the transmission power of an
HS cannot exceed a certain upper limit. This can be modeled
as 0 ≤ Pijk ≤ Pmax, ∀i, j, k, where Pmax denotes the
maximum transmission power limit for the HS.

B. Wireless Signal Path Loss Modeling for Commercial Build-
ings

Since wall separations vary from one building to another in
commercial building environments, it is in general intractable
to account for every wall separation loss in path loss modeling
within the same floor. To address this difficulty, we adopt the
following equation to model path loss (in dBm) [37] within

the same floor:

Pr = Pt − Ld0 − 10α log10

(
d

d0

)
+ ζσ, (2)

where Pt and Pr are the transmission and received powers,
d represents the distance, α denotes the path loss exponent,
d0 is a short reference distance from the transmitter, and Ld0

represents the loss (dB) of signal for the reference distance
d0. In (2), ζσ is a zero-mean Gaussian random variable with
standard deviation σ, which models the log-normal shadowing
effect of path loss [37]. Since extensive measurement experi-
ments have been conducted to determine α for a large number
of partition types (see [37, Table 4.3]), this allows us to use
different values of α to model different buildings.

To incorporate the path loss between different floors, the
path loss model in (2) can be further augmented as [37]:

Pr = Pt − Ld0 − 10α log10

(
d

d0

)
+ ζσ − LFAF , (3)

where LFAF (in dB) denotes the path loss due to floor
attenuation factor (FAF), and where FAF is determined by
the external dimensions and materials of the building, as well
as by the type of construction methods used for the floors and
the external surroundings [38], [39], [37]. Moreover, the FAF
can be modeled as (in dB) [37]:

LFAF =

{
∆1 + (φ− 1)∆a, if φ ≥ 1,
0, if φ = 0,

(4)

where ∆1 represents the FAF for a single floor separation, ∆a

represents the FAF for each additional floor, and φ denotes the
number of separating floors.

Ignoring ζσ for now and converting Eq. (3) to a linear scale,
we have the following result (due to limited space, we refer
readers to Appendix A for details of the proof).

Lemma 1. Denote Pijk and PRm as the transmission and
received power levels for the transmission between subregion
(i, j, k) and AP m, respectively. Then, under the wireless
signal path loss model in commercial building environments
and upon converting PRm , Pijk, and Ld0 to a suitable linear
scale, the following relationship holds between Pijk and PRm:

PRm =
Pijk

C(zm, k)(d
(m)
ijk )α∆|zm−k|

, ∀m = 1, . . . ,M, (5)

where ∆ is a constant that depends on the specific environ-
ment; C(zm, k) is a step function that depends on zm and k
and has the following structure:

C(zm, k) =

{
C0, if zm = k,
C1, if zm ̸= k,

where C0 and C1 are constants that also depend on the specific
environment.



C. QoS Requirement Constraints

To reliably decode an HS’s transmission from subregion
(i, j, k) at a data rate that satisfies the HS’s rate requirement,
it is necessary that the uplink received power level at the AP
should be above a certain threshold value. Let Pmin denote the
minimum power level (in dB). According to (3), the received
power is Gaussian (in dB). Hence, we use outage probability
as the QoS requirement, defined as Pr{Pr < Pmin}, where we
require this quantity to be less than or equal to a target value
β, i.e.,

Pr
{
Pt − Ld0 − 10α log10

(
d

d0

)
+ ζσ − LFAF < Pmin

}
≤ β.

For convenience, we let P̄ , Pt − Ld0 − 10α log10

(
d
d0

)
−

LFAF . Then, the above equation can be rewritten as:

Pr
{
Pr − P̄r

σ
<

Pmin − P̄r

σ

}
≤ β. (6)

Note that Pr−P̄r

σ is a standard normal random variable. Hence,
the probability in (6) is simply Φ(Pmin−P̄r

σ ), where Φ(x) =
1√
2π

∫ x

−∞ e−
t2

2 dt is the cumulative distribution function (cdf)
of the standard normal distribution. Thus, the outage proba-
bility constraint in (6) can be written as Pmin−P̄r

σ ≤ Φ−1(β),
which in turn yields P̄r ≥ Pmin−σΦ−1(β). Letting P

(σ,β)
min ,

Pmin − σΦ−1(β), we can obtain (in dB):

Pt − Ld0 − 10α log10

(
d

d0

)
− LFAF ≥ P

(σ,β)
min . (7)

Further, based on the path loss model in Lemma 1, we have
(in linear scale)

Pijk

C(zm, k)(d
(m)
ijk )α∆|zm−k|

≥ P
(σ,β)
min , ∀i, j, k,m. (8)

By rearranging terms and letting A(zm, k) ,

C(zm, k)P
(σ,β)
min =

{
A0 , C0P

(σ,β)
min if zm = k,

A1 , C1P
(σ,β)
min if zm ̸= k,

we

can rewrite the QoS constraint in (8) as

A(zm, k)(d
(m)
ijk )α∆|zm−k| − Pijk ≤ 0, ∀i, j, k,m. (9)

D. AP Association Modeling

Unlike conventional wireless networks, the channel to the
nearest AP may not be the best for a given subregion. This
is because the closest AP could be separated by a floor and
hence could lead to a worse path loss due to FAF. Therefore,
we try not to define a specific rule for AP association. Instead,
we model the AP association problem as a part of the overall
joint AP placement and power control optimization problem.
To this end, we first define the following binary variables:

π
(m)
ijk =

{
1 if subregion (i, j, k) is associated with AP m,

0 otherwise.
(10)

Then, the AP association can be modeled as
M∑

m=1

π
(m)
ijk = 1, ∀i, j, k. (11)

Also, we need to modify the QoS constraints in (9) as
follows:

A(zm, w)π
(m)
ijk (d

(m)
ijk )α∆|zi−w| − Pijk ≤ 0, ∀i, j, k,m.

(12)
Hence, if π(m)

ijk = 1, then (12) is identical to the original QoS
constraint in (9). Otherwise, (12) reduces to Pijk ≥ 0, which
is trivially valid.

E. Problem Formulation

To reduce energy consumption and ensure fairness among
the HSs, our goal is to minimize the power consumption
of the HS in the subregion that transmits at the highest
weighted power level (weighted by occupant probability),
i.e., min {maxi,j,k(qijkPijk)}. For easier manipulation, we
rewrite the minimax objective function in an equivalent form
as minP , subject to P ≥ qijkPijk, ∀i, j, k. Incorporating other
constraints established earlier, we can formulate the joint AP
placement and power control problem (APPC) as follows:

APPC:
Min. P (13)

s.t. P ≥ qijkPijk, ∀i, j, k, (14)

A(zm, k)π
(m)
ijk (d

(m)
ijk )α∆|zi−k|

−Pijk ≤ 0, ∀i, j, k,m, (15)
M∑

m=1

π
(m)
ijk = 1, ∀i, j, k, (16)

d
(m)
ijk =

[
(|xm − (i− 1

2
)γx|+

1

2
γx)

2

+(|ym − (j − 1

2
)γy|+

1

2
γy)

2

+|(zm − k + 1)h− η|2
] 1

2 , ∀i, j, k,m, (17)

0 ≤ Pijk ≤ Pmax, π
(m)
ijk binary ∀i, j, k,m,

0 ≤ xm ≤ xmax, 0 ≤ ym ≤ ymax, ∀m,

1 ≤ zm ≤ F, ∀m, zm binary,

where the decision variables are [xm, ym, zm]T , d
(m)
ijk , Pijk,

and π
(m)
ijk , ∀i, j, k,m.

Since APPC involves integer variables π
(m)
ijk and zm along

with nonconvex constraints in (15) and (17), this problem
is a mixed-integer nonconvex problem, which is NP-hard in
general [40]. Also, since (15) is highly unstructured, directly
solving APPC is difficult and no standard optimization tools
can be readily applied. In the next two sections, we employ
a novel two-step reformulation approach to transform APPC
into a mixed-integer linear program, which is much easier
to handle. Then, we propose a global optimization approach
that guarantees finding an optimal solution of the reformulated
problem.



III. REFORMULATION STEP ONE: FROM NONCONVEX
MODELING TO CONVEX MODELING

Note that the difficulty in solving Problem APPC stems
from the term A(zm, k)π

(m)
ijk (d

(m)
ijk )α∆|zm−k| in (15) and the

nonconvexity in (17). Hence, our goal in this section is to
convexify the highly unstructured constraint (15) and the
nonconvex constraint in (17).

Reformulating the Distance Constraint in (17): We start
by manipulating the relatively simpler constraint (17). We first
let δ(m)

ijk , (d
(m)
ijk )2, ∀i, j, k,m, so that the constraint in (17)

can be rewritten as

δ
(m)
ijk = (|xm−(i− 1

2
)γx|+

1

2
γx)

2+(|ym−(j− 1

2
)γy|+

1

2
γy)

2

+ ((zm − k + 1)h− η)2, ∀i, j, k,m. (18)

Accordingly, (15) becomes:

A(zm, k)π
(m)
ijk (δ

(m)
ijk )

α
2 ∆|zi−k| − Pijk ≤ 0. (19)

Then, we have the following result:

Lemma 2. The constraint in (18) can be equivalently replaced
by

(|xm − (i− 1

2
)γx|+

1

2
γx)

2 + (|ym − (j − 1

2
)γy|+

1

2
γy)

2+

((zm − k + 1)h− η)2 − δ
(m)
ijk ≤ 0, ∀i, j, k,m. (20)

Moreover, the inequality in (20) automatically holds as an
equality at an optimal solution.

Proof. Consider Problem APPC with (15) and (17) respec-
tively replaced by (19) and (20), and suppose that (20) holds
as a strict inequality at optimality for some i, j, k,m. Then,
by decreasing the values of δ

(m)
ijk to make (20) hold as an

equality, we still maintain feasibility in (19), and hence retain
the optimality of the revised solution.

It is not difficult to verify that (20) is convex. However, we
note that the left-hand-side of (20) involves absolute values,
which are non-differentiable and remains cumbersome for
designing optimization algorithms. To address this issue, we
let Xmi , |xm−(i− 1

2 )γx| and Ymj , |ym−(j− 1
2 )γy|. Then,

Eq. (20) can be rewritten as the following group of constraints:
(Xmi +

1
2γx)

2 + (Ymj +
1
2γy)

2+

(hzm − ((k − 1)h+ η))2 − δ
(m)
ijk ≤ 0,

|xm − (i− 1
2 )γx| = Xmi, |ym − (j − 1

2 )γx| = Ymj .

(21)

It can be seen in (21) that the first constraint is a quadratic
convex constraint. Next, we rewrite the second constraint as
follows: |xm− (i− 1

2 )γx| ≤ Xmi, which is based on the same
argument as in Lemma 2. This can be further linearized as
xm − (i − 1

2 )γx ≤ Xmi and −xm + (i − 1
2 )γx ≤ Xmi. The

third constraint can also be rewritten in the same fashion. After
rearranging terms, we arrive at the following result:

Lemma 3. The distance constraint (17) can be convexified
as:

(Xmi +
1

2
γx)

2 + (Ymj +
1

2
γy)

2+

(hzm − ((k − 1)h+ η))2 − δ
(m)
ijk ≤ 0, (22)

xm −Xmi ≤ (i− 1

2
)γx, and xm +Xmi ≥ (i− 1

2
)γx, (23)

ym − Ymj ≤ (j − 1

2
)γy, and ym + Ymj ≥ (j − 1

2
)γy. (24)

Reformulating the Minimum Received Power Constraint
in (15): Next, we reformulate constraint (15), which is more
involved than (17). Recall that we have restated (15) as (19) by
the change of variables. We now linearize (19) with respect to
the binary variables π

(m)
ijk , which leads to the following result:

Lemma 4. Constraint (15) is equivalent to the following
alternative representation:

A(zm, k)(δ
(m)
ijk )

α
2 ∆|zm−k|

− (1− π
(m)
ijk )U

(m)
ijk − Pijk ≤ 0, ∀i, j, k,m, (25)

where U
(m)
ijk is some upper bound for

A(zm, k)(δ
(m)
ijk )

α
2 ∆|zm−k|.

Lemma 4 can be easily proven by considering π
(m)
ijk ∈

{0, 1}, and verifying the logical equivalence between (25) and
(19). In Lemma 4, a valid value for the upper bound U

(m)
ijk can

be chosen as

U
(m)
ijk , Pσ,β

min max{C0, C1}(δ̄ijk)
α
2 ∆max{k−1,F−k},

where δ̄ijk is an upper bound for δ(m)
ijk . Recall that xmax and

ymax denote the length and width of the building, respectively.
Then, δ̄ijk can be computed as

δ̄ijk = max{(iγx)2, (L− i+ 1)2γ2
x}

+max{(jγy)2, (W − j + 1)2γ2
y}

+max{((2− k)h− η)2, ((F − k + 1)h− η)2}.

Next, to further simplify the nonconvex constraint (25), we
introduce two new variables ν

(m)
ijk , (δ

(m)
ijk )

α
2 and µmk ,

∆|zm−k| and rewrite (25) as the following three simpler
nonconvex constraints:

A(zm, k)ν
(m)
ijk µmk−

(1− π
(m)
ijk )U

(m)
ijk − Pijk ≤ 0, ∀i, j, k,m,

ν
(m)
ijk = (δ

(m)
ijk )

α
2 , ∀i, j, k,m,

µmk = ∆|zm−k|, ∀m, k.

(26)

Now, the reformulation task of (15) boils down to convex-
ifying these three nonconvex constraints. First, consider the
nonconvex constraint ν(m)

ijk = (δ
(m)
ijk )

α
2 in (26). Following the

same approach as in Lemma 2, we can rewrite this as:

ν
(m)
ijk ≥ (δ

(m)
ijk )

α
2 , ∀i, j, k,m. (27)



Note that the inequality constraint in (27) is now convex since
the path loss exponent α is greater than 2 in practice.

To simplify and convexify the remaining two nonconvex
constraints in (26), we first employ the following trick to
represent the general integer variable zm via 0–1 variables:

zm =

F∑
l=1

lλml, ∀m, (28)

and
F∑
l=1

λml = 1, ∀m, (29)

where all λml–variables are binary (i.e., λml ∈ {0, 1}). Using
(28), it is clear that the third nonconvex constraint in (26) (i.e.,
µmk = ∆|zm−k|) is logically equivalent to

µmk =

F∑
l=1

λml∆
|l−k|, (30)

which is linear with respect to λml–variables (because all
the ∆|l−k|-values are constants). Based on this alternative
representation of µmk, we have the following result for
convexifying the first constraint in (26) (see Appendix B for
details of the proof):

Lemma 5. Let g(ml)
ijk , ν

(m)
ijk λml. Then, the first constraint in

(26) can be linearized as

A1

F∑
l=1,l ̸=k

∆|l−k|g
(ml)
ijk +A0g

(mk)
ijk −

(1− π
(m)
ijk )U

(m)
ijk − Pijk ≤ 0, ∀i, j, k,m. (31)

The final step toward a convex reformulation is to convexify
the bilinear term g

(ml)
ijk =ν

(m)
ijk λml introduced in Lemma 5. For

this purpose, we apply the special structured Reformulation-
Linearization-Technique of Sherali et al. [41] to derive the
following result (see Appendix C for proof details):

Lemma 6. Given (28) with λml ∈ {0, 1}, ∀m, l, and given
bounds 0 ≤ ν

(m)
ijk ≤ ν̄

(m)
ijk , the bilinear equation g

(ml)
ijk =

ν
(m)
ijk λml holds if and only if

g
(ml)
ijk ≥ 0, g

(ml)
ijk − ν̄

(m)
ijk λml ≤ 0, (32)

F∑
l=1

g
(ml)
ijk − ν

(m)
ijk = 0, ∀i, j, k,m. (33)

It is worth pointing out that Lemma 6 implies that (32) and
(33) with the second constraint in (28) and λ ≥ 0 effectively
construct the convex hull of the bilinear relationship in g

(ml)
ijk .

This allows for the tightest convex relaxation for the original
problem and will significantly speed up the branch-and-bound
process we propose later in Section V (see Appendix for more
detailed discussions).

piecewise

approximation
linear 

ν

ν = δ
α

2

δ3δ2

δ
α

2 − ν ≤ 0

δ1 = 0

δ

δSδ−1 δSδ
= δ̄

Fig. 4. An illustration of the piece-wise linear approximation for constraint
(δ

(m)
ijk )

α
2 − ν

(m)
ijk ≤ 0 (dropping indices i, j, k,m for notational simplicity).

Putting all the previous derivations together, we obtain the
following equivalent reformulation of Problem APPC (denoted
as R-APPC):

R-APPC:
Min P

s.t. a) RLT reformulation for minimum received power
constraints: (27), (28), (31), (32), (33),

b) Distance reformulation constraints: (22), (23), (24),
c) AP association constraint: (11).

In R-APPC, all constraints are either linear or convex,
and so Problem R-APPC is a mixed-integer convex program
(MICP). Hence, it can readily be solved by a branch-and-
bound (BB) process (see Section III) coupled with its convex
relaxation. However, to design a more efficient and robust
global optimization algorithm, in the next section, we will go
one step further to simplify R-APPC.

IV. REFORMULATION STEP TWO: LINEARIZATION OF THE
NONLINEAR MODEL

As mentioned earlier, although R-APPC is an MICP and can
be solved by BB, the convex relaxation of R-APPC remains a
nonlinear program, which in general may not be solved as effi-
ciently as a linear program of similar size. This motivates us to
consider approximating R-APPC using a linear approximation,
which further transforms the problem into a mixed-integer
linear program (MILP). The fundamental rationale behind
this approach is that MILP has been extensively explored by
the operations research community for decades and powerful
algorithms, techniques, and codes exist for solving large-scale
problems [40].

More specifically, our approach is to use piecewise linear
approximation (PLAP) functions to replace all nonlinear con-
straints in R-APPC. To this end, let us first consider the convex
constraint (δ(m)

ijk )
α
2 − ν

(m)
ijk ≤ 0. For notational simplicity, we

drop the indices i, j, k, and m and rewrite the constraint in
the following form:

(δ)
α
2 − ν ≤ 0. (34)

Since we are only interested in values of δ over the interval
[0, δ̄], we can partition [0, δ̄] into Sδ − 1 smaller intervals via



grid points 0 = δ1, δ2, . . . , δSδ
= δ̄, as shown in Fig. 4.1

Intuitively, the accuracy of the approximation improves as the
number of grid points increases. Indeed, it can be shown that
the error introduced by PLAP is bounded and can be made
arbitrarily small if the number of grid points goes to infinity
[?]. In our numerical studies, we will also study the adequate
number of grid points to achieve a close approximation.

Mathematically, the region obtained by replacing (δ)
α
2 −

ν ≤ 0 with PLAP can be written via the following linear
constraints:

Sδ∑
s=1

τs(δs)
α
2 − ν ≤ 0,

Sδ∑
s=1

τsδs = δ, and
Sδ∑
s=1

τs = 1, (35)

where τs ≥ 0, for s = 1, . . . , Sδ and at most two τs-variables
are positive and they should be adjacent. However, noting that
ν = (δ)

α
2 is strictly convex for α > 2, we can show that

this adjacency requirement can be discarded as stated in the
following proposition:

Proposition 7. Consider the PLAP of Problem R-APPC with
constraints in (35). Then, for each constraint in the form of
(34), at most two τs-variables are positive and they must
be adjacent. Moreover, each δ =

∑Sδ

s=1 τsδs is feasible to
Problem R-APPC.

Proposition 7 can be proved by contradiction and exploiting
the convexity of (34). Due to limited space, we relegate the
details of the proof to Appendix D.

Next, we construct a piecewise linear approximation for the
nonlinear constraint (Xmi+

1
2γx)

2+(Ymj +
1
2γy)

2+(hzm−
((k − 1)h+ η))2 − δ

(m)
ijk ≤ 0. We first expand this constraint

as follows:

Bmi +Dmj + h2Em + γxXmi + γyYmj

− 2h((k − 1)h+ η)zm − δ
(m)
ijk

≤ −1

4
γ2
x − 1

4
γ2
y − ((k − 1)h+ η)2, (36)

X2
mi −Bmi ≤ 0, Y 2

mj −Dmj ≤ 0, z2m − Em ≤ 0, (37)

where we have again changed the equality relationships Bmi=
X2

mi, Dmj =Y 2
mj , and Em= z2m into inequality relationships

based on the same reason as in Lemma 2. Then, we can use
the identical PLAP technique for constraints in (37). To this
end, let SX , SY , and Sz denote the numbers of grid points
for the Xmi–, Ymj–, and zm–variables, respectively, and let
Xmi,1, . . . , Xmi,SX

, Ymj,1, . . . , Ymj,SY
, and zm,1, . . . , zm,Sz

denote the grid points for the Xmi–, Ymj–, and zm–variables,
respectively. Let ξ

(X)
mi,1, . . . , ξ

(X)
mi,SX

, ξ
(Y )
mj,1, . . . , ξ

(Y )
mj,SY

, and
ξ
(z)
m,1, . . . , ξ

(z)
m,Sz

denote the non-negative weights correspond-
ing to the Xmi–, Ymj–, and zm–variables, respectively. Then,
the PLAP for (37) are given as follows (dropping indices i, j, k
and m for notational simplicity):
SX∑
s=1

ξ(X)
s (Xs)

2 ≤ B,

SX∑
s=1

ξ(X)
s (Xs) = X,

SX∑
s=1

ξ(X)
s = 1; (38)

1Note that Fig. 4 is just for illustrative purposes and the grid points may or
may not be equidistant, and different δ-variables may have different numbers
of intervals.

SY∑
s=1

ξ(Y )
s (Ys)

2 ≤ D,

SY∑
s=1

ξ(Y )
s (Ys) = Y,

SY∑
s=1

ξ(Y )
s = 1; (39)

Sz∑
s=1

ξ(z)s (zs)
2 ≤ E,

Sz∑
s=1

ξ(z)s (zs) = z,

Sz∑
s=1

ξ(z)s = 1. (40)

Finally, replacing all nonlinear constraints in R-APPC by
the piecewise linear approximations in (35), (36), (38), (39),
and (40), we have the final MILP problem as follows:

R-APPC-MILP:
Min P

s.t. a) RLT reformulation for minimum received power
constraints: (28), (31), (32), (33),

b) PLAP for Constraint (27) : (35),
c) PLAP for Constraint (22) : (36), (38), (39), (40),
b) Absolute value reformulation constraints: (23), (24),
e) AP association constraint: (11).

V. A SOLUTION PROCEDURE BASED ON A
BRANCH-AND-BOUND FRAMEWORK AND LINEAR

PROGRAMMING RELAXATIONS

Using the two-step reformulations, we have arrived at an
equivalent problem R-APPC-MILP, which positions us to de-
vise a solution procedure based on the branch-and-bound (BB)
framework, which guarantees finding a global optimal solution
[40]. In this section, we provide an overview on using BB to
solve R-APPC-MILP. For a comprehensive understanding of
the BB procedure, we refer readers to [40] for more details.

The BB solution procedure proceeds iteratively as follows.
For R-APPC-MILP, during the initial step, a lower bound on
the objective value is obtained by solving its linear program-
ming relaxation (LPR). Because of the relaxation, the values of
π
(m)
ijk and λml in the LPR solution are likely fractional. Thus,

we conduct a local search (e.g., through judicious rounding)
to recover a feasible solution from the LPR solution. This
feasible solution provides an incumbent solution to R-APPC-
MILP and an upper bound on the objective value. Next, we
branch the problem into two subproblems. The LPR of each
of these two subproblems is then solved and local search is
again used to obtain the lower and upper bounds. This step
completes an iteration.

After an iteration, if the gap between the current upper
bound and the smallest lower bound (among all the sub-
problems) is larger than some predefined desired error ϵ,
we perform another iteration on the subproblem having the
smallest lower bound. Also, during each iteration, we can
remove those subproblems whose lower bounds have a gap
less than ϵ compared to the global upper bound (since further
branching on these subproblems could not yield improved
feasible solutions), thus controlling the increase in the total
number of subproblems in the system. The BB iterations
continue until the smallest upper bound and the smallest lower
bound among all the subproblems are within ϵ. Therefore, the



Algorithm 1 BB/LPR Solution Procedure
Initialization:
1. Let the optimal solution ψ∗ = ∅ and the initial upper bound UB = ∞.
2. Let the initial problem list contain only the original problem, denoted by
P1.

3. Construct and solve the linear programming relaxation. Denote the
solution to this relaxation as ψ̂1 and its objective value as the lower
bound LB1.

Main Loop:
4. Select a problem Pz that has the smallest lower bound (designated as
LB) among all problems in the problem list.

5. Find, if necessary, a feasible solution ψz via a local search algorithm for
Problem Pz . Denote the objective value of ψz by UBz .

6. If UBz < UB, then let ψ∗ = ψz and UB = UBz . If LB ≥ (1−ϵ)UB
then stop with the (1−ϵ)-optimal solution ψ∗; else, remove all problems
Pz′ having LBz′ ≥ (1− ϵ)UB from the problem list.

7. Select a binary variable (π or λ) and branch on the dichotomy of its value
being 0 or 1.

8. Remove the selected problem Pz from the problem list, and construct
two new problems Pz1 and Pz2 based on the foregoing branching step.

9. Compute two new lower bounds LBz1 and LBz2 by solving the linear
programming relaxations of Pz1 and Pz2, respectively.

10. If LBz1 < (1 − ϵ)UB then add Problem Pz1 to the problem list. If
LBz2 < (1− ϵ)UB then add Problem Pz2 to the problem list.

11. If the problem list is empty, stop with the (1− ϵ)–optimal solution ψ∗.
Otherwise, go to Step 4.

best feasible solution is (1 − ϵ)-optimal. We summarize the
BB/LPR procedure in Algorithm 1.

Finally, we point out that the BB/LPR algorithm can be
used to determine the minimum required value of M to ensure
coverage. For a given network, we can start from a small value,
say M = 1 or 2. If M is not large enough, BB/LPR will detect
the infeasibility of the underlying problem. Then, we can do a
bisection search on M and repeat BB/LPR until the problem
becomes feasible (i.e., of complexity O(log(min{M}))).

VI. NUMERICAL RESULTS

In this section, we conduct numerical studies to demonstrate
the efficacy of our proposed optimization approach. First, we
use a building with 36 subregions as an example. As shown
in Fig. 5(a), the building’s length, width, and floor height are
100, 60, and 3 meters, respectively. The occupant probabilities
are listed in Table I and also illustrated in Fig. 5(a): the
darker a subregion, the higher its occupant probability. The
transmission power limit of each handset is 1 W. The minimum
received power threshold for each handset is -80 dBm. The
path loss exponent is 3.5. The shadowing effect deviation is 5
dB. Using our proposed optimization approach, the maximum
weighted transmission power of the handsets is minimized to
0.0028 W. As shown in Fig. 5(a), the optimal AP locations are:
AP1: (x1 = 87.5, y1 = 30.2, z1 = 3), AP2: (x2 = 24.7, y2 =
30.7, z2 = 3), AP3: (x3 = 75.7, y3 = 30.8, z3 = 2), AP4:
(x4 = 22.8, y4 = 28.1, z4 = 2), AP5: (x5 = 66.8, y5 =
19.9, z5 = 1), and AP6: (x6 = 13.1, y6 = 31.2, z6 = 1).
The optimal association relationship for each subregion is also
shown in Fig. 5(a). As expected, due to FAF effect, not all
subregions are associated with its closest AP.

For our proposed PLAP technique, it is interesting to see
how many grid points are needed to achieve a close approx-
imation to the original R-APPC problem. For the network

TABLE I
THE OCCUPANT PROBABILITIES OF THE 36 SUBREGIONS IN FIG. 5(A).

(i, j, k) qijk (i, j, k) qijk (i, j, k) qijk
(1, 1, 1) 0.047 (1, 1, 2) 0.058 (1, 1, 3) 0.002
(1, 2, 1) 0.027 (1, 2, 2) 0.011 (1, 2, 3) 0.008
(1, 3, 1) 0.024 (1, 3, 2) 0.040 (1, 3, 3) 0.034
(2, 1, 1) 0.026 (2, 1, 2) 0.037 (2, 1, 3) 0.032
(2, 2, 1) 0.050 (2, 2, 2) 0.064 (2, 2, 3) 0.001
(2, 3, 1) 0.001 (2, 3, 2) 0.033 (2, 3, 3) 0.009
(3, 1, 1) 0.020 (3, 1, 2) 0.045 (3, 1, 3) 0.003
(3, 2, 1) 0.031 (3, 2, 2) 0.014 (3, 2, 3) 0.003
(3, 3, 1) 0.033 (3, 3, 2) 0.031 (3, 3, 3) 0.018
(4, 1, 1) 0.050 (4, 1, 2) 0.001 (4, 1, 3) 0.031
(4, 2, 1) 0.007 (4, 2, 2) 0.057 (4, 2, 3) 0.043
(4, 3, 1) 0.012 (4, 3, 2) 0.054 (4, 3, 3) 0.046

in Fig. 5(a), we adopt the following rule for the grid point
values: SX = SY = Sz = S and Sδ = 10S. We vary S from
2 (i.e., no intermediate grid point) to 40 and the results are
shown in Fig. 6. We can see that, as S increases, the PLAP
objective value rapidly converges to the original problem. In
this example, the PLAP objective value is near optimal when
S ≥ 10. Hence, in the subsequent numerical studies, we set
S = 40, which guarantees a negligible approximation error
almost surely.

Next, we examine the efficiency and the scaling of the
running time of our proposed algorithm as the number of
subregions increases. The size of the building and wireless
channel/transceivers parameters are the same as in the previous
example. We increase the number of subregions as follows: 6
(2× 1× 3), 12 (2× 2× 3), 18 (3× 2× 3), 24 (4× 2× 3),
30 (5× 2× 3), and 36 (4× 3× 3). For each setting, the run-
time is obtained by averaging over 50 randomly generated
examples. The results are shown in Fig. 7, which depicts the
y-axis in both linear and log scale. For comparative purposes,
we plot the BB run-time with and without PLAP. In both
cases, the run-time increases roughly exponentially, which is
an expected phenomenon when searching for global optimal
solutions for mixed-integer programs. However, it can be seen
that with PLAP, the increase of run-time is much slower than
that without PLAP. This exhibits the beneficial effect of our
proposed PLAP approach.

As mentioned earlier, our BB/LPR algorithm can also be
used to determine the minimum required number of APs to
ensure network coverage. As an example, here we study how
the minimum required number of APs changes as the wireless
channel parameters vary. Again, the size of the buildings used
in this simulation remains the same as before. We study two
settings: 1) fix the path loss exponent α to 3.5 and vary the
shadowing effect deviation σ from 1 dB to 8 dB (i.e., channels
fluctuate more and more); and 2) fix the shadowing effect
deviation σ to 5 dB and vary the path loss exponent from 2 to
5 (i.e., signals attenuate faster and faster). For each case, the
result is obtained by averaging over 50 randomly generated
examples. The results are shown in Fig. 8. We can see that
when σ varies from 1 dB to 8 dB, the minimum required
number of APs increases from 3 to 6. Likewise, when α
increases from 2 to 5, the minimum required number of APs



(a) 3D view.

(b) Bird-eye view.

(c) Horizontal view.

Fig. 5. The optimal AP locations and the association relationship for each
subregion in a 36-subregion building.

increases from 3 to 9.

VII. CONCLUSION

In this paper, we studied a joint access point (AP) place-
ment and power control optimization problem for commercial
buildings with the aim to prolong mobile handsets’ battery
lives. We constructed a mathematical model that considers the
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floor attenuation factor and AP location restrictions in building
environments. Based on this model, we proposed a novel two-
step reformulation technique to transform the original mixed-
integer nonconvex problem into a mixed-integer linear pro-



gram. This reformulation technique led to an efficient global
optimization algorithm based on a branch-and-bound frame-
work with linear programming relaxations, which guarantees
finding a global optimal solution. Moreover, our numerical
studies showed that the run-time for the proposed algorithm
scales slowly with respect to the number of subregions in a
building. We note that AP placement in building environments
is an important and yet under-explored area. This paper offers
both useful theoretical insights and practical design tools for
future wireless network provisioning planning in buildings.
Possible future directions include to 1) develop algorithms
and software tools to study the placement problem in more
complex multi-hop indoor wireless networks, 2) consider
joint spectral management and placement optimization, and
3) develop fast approximation algorithms with provable per-
formance guarantees (e.g., constant-factor approximation).

APPENDIX A
PROOF OF LEMMA 1

Combining (2) and (4) and noting that the number of floors
between the subregion (i, j, k) and the m-th AP is |zm − w|,
we obtain that (in dBm)

PRm=


Pijk − Ld0 − 10α log10

(
d
(m)
ijk

d0

)
, if zm = k,

Pijk − Ld0 − 10α log10

(
d
(m)
ijk

d0

)
−∆1 − (|zm − k| − 1)∆a, if zm ̸= k.

This implies that, after converting each of PRm , Pijjk, and
Ld0 to a linear scale (i.e., letting y = 10

x
10 , where x and y

are in dBm and the linear scale, respectively), we have

PRm=


Pijk

Ld0
(d

(m)
ijk /d0)α

, if zm = k,

Pijk

Ld0
(d

(m)
ijk /d0)α10(∆1/10)10((|zm−k|−1)∆a/10)

if zm ̸= k.

(41)
Then, the result in (5) follows by letting C0 = Ld0d

−α
0 , C1 =

Ld0d
−α
0 10(∆1−∆a)/10, and ∆ = 10∆a/10.

APPENDIX B
PROOF OF LEMMA 5

Since zm is integer-valued on {1, . . . , F}, we can rewrite
it as the following equivalent binary representation:

zm =
F∑
l=1

lλml, ∀m,

where λml ∈ {0, 1}, ∀m, l, such that
F∑
l=1

λml = 1, ∀m.

As a result, we can reformulate the nonconvex constraint
µmk = ∆|zm−k| in (26) as the following linear constraint
in the λml-variables.

µmk =

F∑
l=1

λml∆
|l−k|, ∀m, k. (42)

With (42), we can further simplify (26) into an expression
that only involves binary variables instead of general integer
variables. Substituting (42) into the first constraint in (26), the
latter becomes:

A(zm, k)
F∑
l=1

∆|l−k|ν
(m)
ijk λml − (1− π

(m)
ijk )U

(m)
ijk

− Pijk ≤ 0, ∀i, j, k,m. (43)

Recall that A(zm, k) is equal to A0 if zm = k and equals A1

if zm ̸= k. Thus, (43) can be further written as

A1

F∑
l=1,l ̸=k

∆|l−k|ν
(m)
ijk λml +A0ν

(m)
ijk λmk−

(1− π
(m)
ijk )U

(m)
ijk − Pijk ≤ 0, ∀i, j, k,m. (44)

So far, we have converted the highly unstructured expression
in (15) to an expression in (44) that is linear in the binary
variables π

(m)
ijk , but has bilinear terms ν

(m)
ijk λml. Then, by

letting
g
(ml)
ijk , ν

(m)
ijk λml, ∀i, j, k,m, l, (45)

we can see that (44) can be linearized as

A1

F∑
l=1,l ̸=k

∆|l−k|g
(ml)
ijk +A0g

(ml)
ijk −

(1− π
(m)
ijk )U

(m)
ijk − Pijk ≤ 0, ∀i, j, k,m.

This completes the proof.

APPENDIX C
PROOF OF LEMMA 6

We first show the “only if” part. Since ν
(m)
ijk is non-negative

and bounded from above and λml is binary, we have

ν
(m)
ijk ≥ 0, ν

(m)
ijk − ν̄

(m)
ijk ≤ 0, and λmk ≥ 0, (46)

in addition to (29), where ν̄
(m)
ijk denotes an upper bound for

ν
(m)
ijk . From the inequalities in (46), we derive the following

two so-called bound-factor constraints:

ν
(m)
ijk λml ≥ 0, and (ν

(m)
ijk − ν̄

(m)
ijk )λml ≤ 0,

which, upon applying the substitution (45), yields:

g
(ml)
ijk ≥ 0, and g

(ml)
ijk − ν̄

(m)
ijk λml ≤ 0.

Furthermore, multiplying both sides of (29) by ν
(m)
ijk and using

(45), we derive:
F∑
l=1

g
(ml)
ijk − ν

(m)
ijk = 0, ∀i, j, k,m.

This completes the proof of the “only if” part of the theorem.
Conversely, note that when λml = 0, then (32) implies that

g
(ml)
ijk = 0 = ν

(m)
ijk λml. On the other hand, when λml = 1, it

follows from (29) that λml′ = 0, ∀l′ ̸= l. As above, we have
g
(ml′)
ijk = 0, ∀l′ ̸= l. Thus, we obtain that g

(ml)
ijk = ν

(m)
ijk =

ν
(m)
ijk λml, using (33) along with g

(ml′)
ijk = 0, ∀l′ ̸= l. This

completes the proof of “if” part of the theorem.



APPENDIX D
PROOF OF PROPOSITION 7

Without loss of generality, suppose that there J constraints
in the form of (34). Thus, we have the following PLAP
constraints:

Sδ∑
s=1

τjs(δjs)
α
2 − νj ≤ 0, j = 1, . . . , J,

Sδ∑
s=1

τjs = 1, j = 1, . . . , J, τjs ≥ 0, for s = 1, . . . , Sδ,

To prove the first part of Proposition 7, it suffices to show
that if τjs1 and τjs2 are positive, the grid points δjs1 and
δjs2 must be adjacent. By contradiction, suppose that there
are τjs1 and τjs2 > 0 such that they are not adjacent. Then,
there exists a grid point δjs′ ∈ (δjs1 , δjs2) such that δjs′ =
µj1δjs1 + µj2δjs2 , where µj1, µj2 > 0 and µj1 + µj2 = 1.
Next, for the optimal solution to the PLAP of R-APPC, let
ρj ≥ 0 be the optimum Lagrangian multipliers associated with
the constraint

∑Sδ

s=1 τjs(δjs)
α
2 − νj ≤ 0 and let θj be the

optimal Lagrangian multiplier associated with the constraint∑Sδ

s=1 τjs = 1. Then, it is easy to verify that the following
subset of the KKT conditions holds:

ρj((δjs1)
α
2 − νj) + θj = 0, (47)

ρj((δjs2)
α
2 − νj) + θj = 0, (48)

ρj((δjs)
α
2 − νj) + θj = 0, ∀s. (49)

Now, we show that the last condition in (49) is contradicted
for s = s′. By the strict convexity of δ

α
2 − ν, we have

ρj((δjs′)
α
2 − νj) + θj

= ρj((µj1δjs1 + µj2δjs2)
α
2 − νj) + θj

< ρj(µj1((δjs1)
α
2 − νj) + µj2((δjs2)

α
2 − νj) + θj

= µj1

(
ρj((δjs1)

α
2 − νj) + θj

)
+

µj2

(
ρj((δjs2)

α
2 − νj) + θj

)
= 0.

This contradicts (49) for s = s′, and hence, δjs1 and δjs2 must
be adjacent, i.e., the first part of Proposition 7 is proved.

To show the second part of Proposition 7, by the convexity
of δ

α
2 − νj , we have

δ
α
2 − νj =

( Sδ∑
s=1

τjsδjs

)α
2 − νj ≤

Sδ∑
s=1

τjs

(
(δjs)

α
2 − νj

)
≤ 0.

Hence, δ =
∑Sδ

s=1 τjsδjs is feasible and the proof is complete.
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