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Abstract—Due to the rapidly growing scale and heterogeneity
of wireless networks, the design of distributed cross-layeop-
timization algorithms has received significant interest fom the
networking research community. So far, the standard distrbuted
cross-layer approach in the literature is based on the firserder
Lagrangian dual decomposition and the subgradient method,
which suffers from a slow convergence rate. In this paper, we
make the first known attempt to develop a distributed Newtons
method, which issecond-order and enjoys aquadratic convergence
rate. However, due to the inherent interference in wireless
networks, the Hessian matrix of the cross-layer problem has
a non-separable structure. As a result, developing a distributed
second-order algorithm is far more difficult than its counterpart
for wireline networks. Our main contributions in this paper
are two-fold: i) For a special network setting where all links
mutually interfere, we derive closed-form expressions forthe
Hessian inverse, which further yield a distributed Newtons
method; ii) For general wireless networks where the interfeence
relationships are arbitrary, we propose a double matrix-spitting

scheme, which also leads to a distributed Newton's method.

Collectively, these results create a new theoretical franveork for
distributed cross-layer optimization in wireless networks. More
importantly, our work contributes to a potential second-order
paradigm shift in wireless networks optimization theory.

I. INTRODUCTION

method suffers from a slow convergence rate and is sengitive
step-size choices [7]. Due to these limitations, in thisgrawe
consider designing a distributed Newton’s method for cross
layer optimization in wireless networks. The fundamentat p
losophy of this approach is that, beingecond-ordemethod,

a distributed Newton'’s algorithm exploits both the grademd
Hessian information in determining search directions. ¢éen
an appropriately designed distributed Newton’s methodlgvou
also enjoy the powerfufjuadratic rate of convergencas in
classical Newton type methods [7], [8].

However, developing second-order distributed algorithms
for wireless networks is highly challenging and, to our kikow
edge, results in this area remain elusive. Due to a veryrdifite
problem structure in wireless networks, techniques used fo
developing distributed second-order algorithms in wireli
networks [9]-[11] cannot be directly applied (see Sectidon
more detailed discussions). Generally speaking, in ailolig&d
second-order algorithm, computing the primal and dualckear
directions typically requires decomposing the inverseshef
Hessian matrix and a weighted Laplacian matrix (weighted by
the Hessian inverse), and then distributing each piecedb ea
network entity (i.e., a node or a link). Unfortunately, weli

The proliferation of mobile communication devices (e.gwireline networks for which the Hessian is (block) diagonal
smartphones, tablets, etc.) has been accompanied by a rdgée [11]), the Hessian’s structurenien-separablelue to the
growth in scale and heterogeneity of wireless networkimherent interference in wireless networks. What is wosse i

As a result, distributed cross-layer algorithms have resgki

that, not only are both the Hessian and weighted Laplacian

significant interest from the wireless networking researéhversions cumbersome in large-scale wireless netwohes, t
community in recent years. In the literature, the standaottained inverses also have no sparsity structure in genera
approach for distributed optimization in wireless netwgorkHence, distributed computations of the Hessian and weighte
is based on the Lagrangian dual decomposition framewdrkplacian inversion problems in wireless networks are far
and the subgradient method (LD-SG), which is primarily dueore difficult than their counterparts in wireline netwarks

to its elegant cross-layer implementations (see, e.g.afi]

The key contribution of this paper is that we successfully

references therein). The LD-SG framework is also intimatetlevelop a series of new second-order techniques to overcome

linked to the celebrated throughput-optimal “back-pressu

all of the above difficulties in wireless networks. Hence,

algorithm [2], which has led to a large number of routing andur work can be viewed as the first building block towards
scheduling schemes for wireless networks (see, e.g.,dB]-[ the development of an analytical foundation for cross#laye

However, despite its theoretical and engineering app#ats,

design that provides second-order convergence speed. The

performance of LD-SG is not satisfactory in practice. Besgng main technical contributions of this paper are as follows:
first-order approach in nature (search directions are baseds We first consider a special network setting where every two

the first-order supports of the dual function), the subgradi
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links mutually interfere and cannot transmit simultandpus
(e.g., CSMA networks, cellular uplink/downlink, etc.). In
this case, by exploiting the special “arrow-head” sparsity
structure in the Hessian (cf. Eq. (18)), we prove that the



inverse of the Hessian matrix is also an “arrow-head” matrokeveloped for the pure minimum cost routing problem (with
and can be computed iclosed-form thus significantly re- fixed source rates) by Jadbabateal. in [9], where they pro-
ducing the computational complexity. More importantlye thposed a consensus-based local averaging scheme to egrativ
derived closed-form expression of each entry in the Hessiaompute the Hessian inverse and established its convergenc
inverse naturally leads to a distributed implementation. using spectral graph theory [19]. Finally, in our previousrkv

« We next consider general wireless networks where the int¢td], we showed that, through a suitable reformulation that
ference relationships are arbitrary. In the general casee s exposes a block diagonal structure in the Hessian matrix, a
the Hessian inverse is non-sparse and deriving its closetistributed Newton’s method can be developed for the more
form expressions is intractable, we propose to iterativebpomplex joint multi-path routing and flow control problem
compute the Hessian inverse and the weighted Laplaciay generalizing the matrix-splitting idea in [11]. Howeyer
inverse by a newdouble matrix-splittingtechnique. This we point out that none of the aforementioned techniques can
double matrix-splitting scheme can be parameterized fbe directly applied to wireless networks due to a completely
convergence speed tuning and, more importantly, impléifferent Hessian matrix structure (cf. Eq. (18)), and our
mented in a distributed fashion. development of the distributed Newton’s method for wirsles

« We offer interesting insights and networking interpretai networks cross-layer optimization is completely new.
for our proposed distributed algorithms, as well as the con-
nections with and differences from first-order approaches.

This further advances our understanding of second-ordeMVe first introduce our notation used in this paper. W:,? use
approaches in wireless network optimization theory. boldface to denote matrices and vectors. For a matrbA

rﬁenotes the transpose &. Diag{A,..., AN} represents
the block diagonal matrix with matrice&,..., Ay on its

IIl. NETWORK MODEL AND PROBLEM FORMULATION

To the best of our knowledge, this paper is the first wo

that develops a distributed second-order method for deyss- L .
 develops . . main diagonal. Alsodiag {A} represents the vector contain-
optimization in wireless networks. Collectively, our résu

. , . - ing the main diagonal entries ck. We let (A);; represent
serve as an important first step in providing a cross-_layt(?1e entry in thei-th row andj-th column of matrixA and let

solution for wireless networks using second-order tealnsq
. . . : t then-th entry of vectorv. We letIx denote
The remainder of this paper is organized as follows. I‘mv)m represen . . . K
bap 9 the K-dimensional identity matrix, and ldtx and0x denote

Section II, we review related work in the literature, pu‘minthe K-dimensional vectors whose elements are all ones and
our work in a comparative perspective. Section Il introgksic ) . .
P persp \Feros. We Ieb%) denote thek-th vector in the natural basis

the network model and problem formulation. Section | 0f RX (.., thek-th entry is “1” and other entries are “0").

develops the principal components of our distributed Nevgto Network layer model. In this paper, a wireless network

method. Section V presents some relevant numerical results .
and Section VI congudes this paper. iS represented by a directed graph, denoted;by {N, L},

where A and £ are the sets of nodes and links, respectively.
Il. RELATED WORK We assume thaf is connected. The cardinalities of the sets

Since distributed second-order methods for wireless néY- and £ are [NV| = N and [£| = L, respectively. We use
works have not been investigated in the literature, the worwff sLo-caIIednode-arc incidence matrixNAIM) [20] A <
being surveyed herein are for wireline networks only. HistoR  t0 represent the network topology 6f Let Tx(l) and
ically, second-order methods for network optimizationttbo Rx(l) denote the transmitting and receiving nodes of link
centralized and distributed) date back to the 1980s, inclfgSPectively. The entries ok are thus defined as follows:
ing, e.g., a centralized projected Newton’s method for mult 1, if n="Tx(),
commodlty rov_v problems [12] and_ a d|str|but(_ed. conjugate (A =4 —1, if n=Rx(l), 1)
gradient direction method for solving pure minimum cost
flow routing problems [13]. These early attempts all emptbye
gradient projections to identify feasible search diratdioln In the network, different source nodes send independeatdat
contrast, most of the recent works in this area [9]-[11]]H14 their intended destination nodes, potentially throughtirpdth
[16] are based on the interior-point approach [17] due to igsxd multi-hop routing. Suppose that there @fesessions in
superior efficiency in both theory and practice. One of thet firthe network, representing different commodities. We denote
applications of an interior-point based second-order orththe source and destination nodes of sesgipn < f < F,
was developed for the pure flow control problem (with fixeds Src(f) and Dst(f), respectively. The source flow rate of
routing) [14], where Zymniset al. proposed a centralizedsessionf is denoted by a scalas; € Ry. For session
truncated-Newton’s primal-dual algorithm. Bicksehal.[15], f, we use asource—destination vectarectorb; € RY to
[16] also studied the same problem and designed a distdbutepresent the supply—demand relationship of sesgiddore
algorithm based on the Gaussian belief propagation teaknigspecifically, the entries i are defined as follows:
to avoid direct Hessian inversion [18]. Alternatively, Vgial. .

[10] approached the same distributed flow control probledh an L if n = Sre(f),
computed the Hessian inverse based on an iterative matrix- (bf)n =4 —1, if n=Dst(f), 2
splitting scheme. A distributed Newton’s method was also 0, otherwise.

0, otherwise.



For every linkl, we let xl(f) > 0 represent the flow amountrestriction can be computed &5 = Zle tiCl(i). Then, the
of sessionf on link . We assume that the network is a flowaforementioned stability condition can be written explcas:
balanced system, i.e., the following flow-balanced consisa

F I
hold at each node: le(f) < Zticz(z)v Vi=1,...,L, (5)
Z xlf) Z x —sf, if n = Sre(f), = =
leO(n) 1€Z(n) wheret;, Vi, are decision variables. We remark that (5) is a

Z ffzf) Z x =0, if n £ Sre(f), Dst(f), necessary condition on the feasibility of average flow ratad
can be viewed as a relaxation of the instantaneous link d@gpac

leO(n) l€Z(n) . _ . R . .
) _ it constraint where time-sharing is not allowed (i.e., rejplg¢;
>ow =) ) = —sp, it n=Dst(f), by »7 €{0,1} in each time instant, wherey? =1 if ¢ is
1€O(n) 1€Z(n) selected inT or O otherwise). Hence, the solutions obtained

where O (n) and Z (n) represent the sets of outgoing andia (5) may be infeasible under the instantaneous link dapac

incoming links at noden, respectively. We letx(f) £ constraint. But to enable the development of second-order
2 (f)7 CC(Lf)] € RZ denote therouting vectorfor session methods while drawing useful insights for future schedylin
f across all I|nks Usmg the notatioA, by, andx(/), the Schemes design, we choose to work with the constraints in (5)

above flow-balanced constraints can be compactly written 4% this paper. We note, however, that the solution obtairiad v
(5) is indeed achievable under time-sharing.
AxP) —s;bp=0, Vf=12.. . F ©) Problem formulation. We associate a utility function

Note that in (3),A is not of full row rank (because all columnsU/(5f) - Ry = R with each sessioff. The overall network

o . F
sum up to zero). To eliminate the redundant rowdinwe let utility is given by 5, Us(sy). We also assume that the
A ¢ RIV-DXL pe obtained by deleting from. the row utility functions Uy are strictly concave, monotonically in-

corresponding to the nodBst(f). It is easy to verify that creasing, twice continuously differentiable, and revigrself-
AU is of full row rank [20]. Also, we leth(!) € RN-! be concordant (see [8] for the definition of self-concordanCejr

obtained by deleting fronb, the entry corresponding to theObJecnve IS to maximize th_e overall_ network utility. Pug
nodeDst(f). Accordingly, we rewrite (3) as: together the models described earlier, we can formulate the

cross-layer optimization (CLO) problem as follows:
ADx _ b =0, Vf=1,2,... F (4)

CLO:

Link layer model. In this paper, we adopt the follow- F
ing collision-based interference model at the link layer: | Maximize ZUf sf)
a given time instant, due to the shared nature of wireless f=1
media, only a subset of links can be activated simultangouskypject to A )x() — ng(f) =0, Vf=1,...,F
without interfering with each other. To model this, we let P 7
fC £ {.c(l), ...,cD} denote thei set of a!l p055|bl(? mterferLence- S o <3 e, Vi=1,.. L
ree link rate vectors, where(”) [C ,Cp ] € R}
In ¢, if CZ) > 0 andCZ) > 0 for somely,ly € E 7
then it |mpl|es that linkd andlg do not interfere with each Zti =1,
other and are both activated. Under this model, selecting a i=1
link rate vector fromC in each time instant is equivalent to xl(f> >0, Vf,l; s;>0,Vf; t;>0, Vi

activating a subset of interference-free links. For sigiplj
in this paper, we do not consider channel variations (i.e.,Note that Problem CLO is a convex program and can be
cl(” is time-varying due to fading and/or mobility of thesolved in the Lagrangian dual domain with a zero duality gap
nodes) when selecting the subset of interference-frees.link7], [8]. Moreover, due to the separable structure of thel dua
Such “opportunism” of exploiting channel state informatio function, Problem CLO can be solved distributedly by theldua
(CSI) will be left for our future study. decomposition and subgradient optimization (LD-SG) frame
Now, we letA £ Co(C) C R% denote the link capacity work (see [1] or [21, Appendix A] for an overview). However,
region under the interference- free restriction, wh@eé.) rep- as mentioned earlier, the convergence performance of LD-SG
resents the convex-hull Operation_ Then, a necessarytﬂmmm is unsatlsfactory. In what fO"OWS, we will |nvest|gate anne
for the network to be stable is that the flow routing vectoi@istributed second-order method to solve Problem CLO.
satlsfyz _,x) e A. Further, it is well-known that the
convex- huII operation in\ can be achieved through a standard
time-sharing argument [1], [2]. Thus, we lgtrepresent the In this section, we first reformulate Problem CLO to fa-
fraction of time during which link rate vectar'”) is selected, cilitate the second-order design of our distributed Nevston
where ¢; satisfies0 < ¢t; < 1 and Zle t; = 1. With method in Section IV-A. Then, we investigate its Hessian
time-sharing, the capacity of linkunder the interference-freematrix structure in Section IV-B. The distributed compigas

IV. ADISTRIBUTED NEWTON'SMETHOD



of the primal Newton directions and the dual variables amntains the dual variables for the constravily = e@) at
presented in Sections IV-C and IV-D, respectively. the k-th iteration. Here, the entries iw* are arranged as

(T (F)\NT . .
A. Problem Reformulation and Interior-Point Based Disl(Ws ) o+ (Wi )7, wi]", wherew, is the dual variable
tributed Newton’s Method assomated with the time-sharing constraEf_ ; =1, and

(f)
We start by reformulating Problem CLO using the interior- Wi is in the form of

2 )] (£ (f) (f) (T
point framework. Following the standard interior-point-ap w;/) £ [y, S WBe ()1 WDat(f) 10 -2 WN | (10)
proach [17], we apply a logarithmic barrier function to all o

inequality constraints and then accommodate them in the Q§2te thatin (10), we have dropped the iteration inéexithin

jective function. As a result, the augmented objective fiamc [-] for notational simplicity. For the same reason, in the rést o
(to be minimized) can be written as follows: the paper, the iteration indéxwill be dropped whenever such

an omission does not cause confusion. Also, Weugsfh(f) =
L F i i P ;
0, for all f. It can be readily verified that the coefficient matrix
_ (4) () . o . .
y) = —MZUf(Sf Z ) <Zt G le of the linear equation in (9) is nonsingular. Therefore, the
=1 = primal Newton directiom\y* and the dual variables” can be

L F ; ; i i k
uniquely determined by solving (9). However, solving foy
- Z log(sy) Z Z B Z log(ti), (6)  andw* simultaneously via (9) requires global information and
= =1 r=1 =1 is difficult to be decentralized.
wherey £ [81 SF|I(1) . (F) . ‘ .. F)‘t1 I]T The first key step towards designing a distributed Newton’s
groups all variables. In (B)M > 0 is a parameter that is method is to solve (9) in aalternativefashion as follows:
used to track the central path in the interior-point methed a Ay* = —H; ' (Vfu(y") + MTw"), (11)
— oo [8]. Moreover, we let _ _ _
a 53], N = (MH;'MT)" (-MH'Vf,(y*). (12
= { e 1T } e RIVDFRIXEFDEH] - Hance, givery*, we can first computer* from (12). Withw*,

' o B B we can solve foAy* from (11). ThenAy* can be used in (8)
whereB and A; are defined a8 £ Diag{b") b(F)},  (along with an appropriate step-siz&) to determine the next
andA,; £ Diag{—al(l), . —alF)} and where in the defini- primal feaS|bIe solutiory**+*. However, as we shall see later,
tion of A;, the vectoral(f) is the I-th column in the matrix computlngH and (MH, 'M”)~! (which is the Laplacian
AY) in Problem CLO (i.e,A() = [agf) agf) a(Lf)} _ matrix [19] weighted b)Hkl) remains difficult due to thaon-

Then, we can reformulate Problem CLO as follows: separablestructure of H, and requires global information.

o This is in stark contrast to those optimization problems for

R-CLO: Minimize  f.(y) (7) Wireline networks [9]-[11], where the Hessian matrices are
subject to My = e\”, (block) diagonal and their distributed inversion compiotas

wheren = (N — 1)F + 1. In f,(y), note that ag, — oo, are much easier.

the original objective function of Problem CLO dominate® The Structure of the Hessian Matrix
the barrier functions, and hence the solution of Problem R-
CLO approaches that of Problem CLO asymptotically. Further
sinceyu can be increased exponentially (e.g., letting= 2%),
it suffices to focus on a second-order solution to fhéy)

To see the coupled and non-separable structud ,gfwe
dvaluate the first and second partial derivatives,gffy), for
which the non-zero ones are:

problem in order to achieve a second-order convergencelspee% = —uU%(s5) — 1 % = U (s5)
Now, we solvef,(y) by applying the (centralized) New- Osg 4 7 35% 7
ton’s method, which is a second-order algorithm. Startnognf Ofu 1 1 9% f, 1 1
an initial feasible solutioy?, the centralized Newton’s method P (f) 5_1 - ﬁa a(x(f))Q =52 m,
iteratively searches for an optimal solution as follows: ! ! Lo
s . 021, 1 Of, (e 1
Yoy Ay © o~ o~z ) e
wheren* > 0 is a positive step-size. In (8\y”* denotes the : (1 z:1L (i1) (i)
primal Newton direction, which is the solution to the follimg 32fu Z C 1 0% f, _ Crer
linear equation system obtained by deriving the Karushikuh  9t2 tz’ oty oti, = o

=1
Tucker (KKT) system of the second-order approximation of 92 f C(Z
13 l

fuly) [71, [8]: e =

Na,. 52
[ Hk MT ] [ Ayk :| o _|: Vfu(yk) :| (9) 8‘rl atz l
M o0 wko| T 0 ’

where H;, £ V2f,(y*) € REFDEXLADE jg the Hessian
matrix of f,(y) at y*, and the vectorw* € R(N-DI+1 a2, .. ,.cIT er! (13)

whered, £ ST tiC’l(i) - Z?Zl xl(f) represents theinused
link capacityof link [. For convenience, we use a vector



to group the capacity values of tligh link in each of thel network setting, due to the pairwise interference relatndm,
link rate vectors. We further define the following matrices: it is apparent that there can only lielink rate vectors (i.e.,

1 1 I = L), each of which has only one active link. In this
sS4 Diag{—uU{’(sl) + =, ., —uUp(sp) + —2}, (14) case, without loss of generality, we can redefinein (13)
5 5F as follows:
1 1
XlﬁDiag{(x(l))Q,...,(x(F))Q}—F%lFlE, Vi, (15) Cl:[()...1...0]TERLEeg)7 (19)
1 : : i.e., the only non-zero entry “1” appears at thth position.
C = —6—21F01T, vi, (16)  For simplicity, we assume that each active link has a unit ca-
! . pacity. The extension to cases with arbitrary positive capa
A 1 1 1 7 values is straightforward, but at the expense of more cample
T = Diag { t2’ t2} + lz; 62 e (7 notation. With this new notion of; and (17), we have
Then, it can be verified that the Hessian mafiy has the T = Diag { (l + i) e (i + i) } ] (20)
following “arrow-head” structure: ti o g o1
S We point out that the diagonal structureBfin (20) will play
TIX, T T T T T T a critical role in deriving the closed-form expressionsH;,j1
! and the primal Newton directions.
H;, = : : : (18) Our key idea to computH,:1 in the special setting is to
| X, Cp rewrite H;, in a decomposition structuréo enable the ap-
‘¢ ... CI T plication of the Sherman—Morrison—Woodbury (SMW) matrix

Remark 1. It is insightful to compare the structure @, in_version Iemma [7]. In what follows, we outline the key step
with that in [11]. Due to the absence of the time-sharin§i'St: We define two new vectors as follows:

component, the Hessian in [11, Section VC] is block d| & 2[07,...,17%,...,0%, 077 ¢ REFDF+L,

agonal and exactly t_he same as_the principal submatrix & 2 (07 07 T c READF+L

Diag {S,Xy,..., X} in (18). In this paper, however, the ! Fore B '

coupling between the routing-variables and the time-sharing In the definition ofe;, the vectorlz appears at thél + 1)-
t-variables yields two non-zero “bands” consisting of - st block. Then, it can be readily verified that the “arrow-

matrices. Thus, the block diagonal structure is destroyed head” structure oHy, in (18) can be decomposed into a block
(18)1 after incorporating the time-sharing component. Hencdiagonal matrix coupled with a rarkt update as follows:
H, " needs not be sparse even thoudh itself has certain )

spli';lrsity structure. Also, due to the “arrow-head” strucguin Hy, = Diag {8, Xy,..., Xp, T} +

(18), finding closed-form expressions fH,;l is intractable L 1Y\~ = 1Y - o

in general. Fortunately, as will be shown in later sectioths > (__2) el +) (_5_2) cie,  (21)
arrow-head structure still provides some unique featutest t =1 =1 :
can be exploited to iteratively and distributedly compHtg'.  where rankZ updatesy")”, (—)&cf and>", (- &)&&]
Furthermore, under an interesting special case, this afrowield the vertical and horizontal bands in (18), respetfive
head structure leads to closed-form expressionsIJI(gr1 and For convenience, we define the following matrices:
reveals many interesting networking insights.

D £ Diag{S,Xy,..., X, T},
C. Distributed Computation of Primal Newton Directions U2 [5_1 ... 8L & ... CL 1,

—51° LA T e S -
In this subsection, we first consider a special collision- \= FETEERE e ,%7]T
1 L 1 L

based network setting in which every two links in the networ
mutually interfere. In this special network setting, weider
closed-form expressions f#f;_ ', which further lead to a fully
distributed computational scheme for primal Newton direc- H,'=D'-D 'U(I+ VD 'U)"'VD . (22)
tions. Next, we propose a matrix-splitting based technigue
computing the primal Newton directions for general wirsle
network settings.

1) Primal Newton Directions: A Special Network Setting.

hen, Eqg. (21) can be compactly written Hg, = D + UV.
It then follows from the SMW matrix inversion lemma that

Now, we consider the computation of each term in the
right-hand-side (RHS) of (22). First, thanks to tlodock
diagonal structureof D, we have thatD—!' is simply

We now consider a special network setting where every w28 {s71.x.7, h ,XLl,Tfl}._Furthe[, due tglthe same
links in the network mutually interfere with each other. FhiStructures as their counterparts in [18]," andX;"" can be
special setting is interesting in that it is a relevant mod§PMPuted in closed-form by using Lemma 4 and Theorem 5
for many collision-based network architectures within on& [}1]' Also, sinceT is diagonal, we immediately have that
common interference domain (e.g., CSMA networks, celluldr ~ ¢&n be computg%zdlstrlbuzzegzly (link-wise) in closed-form
uplinks/downlinks, or dense ad hoc networks, etc.). In th@gs: T~' = Diag{gﬁ;?a---vt—{‘ﬁg}- Next, by exploiting



the sparsity structure af;, c¢;, and the diagonal structure ofif the positive(w(TQ(l) — ng)(l))—values outweigh the negative
T, we can derive a closed-form expression for the inversmes, i.e., the “pressure” on the transmitter side of lihks
of the Schur complement (i.e(I + VD~'U)~!, see [21, greater than the “pressure” on the receiver side, theﬁ)
Theorem 4.4]). Then, through the SMW lemma, we arrive and¢; will be increased in the next iteration.

the first key result of this paper (the proof is relegated tb, [2

Appendix C] due to space limitation): 2) Primal Newton Directions: General Network Settings.

So far, we have used an SMW-based approach to derive a
Theorem 1. H,' has the same “arrow-head” structure as infully distributed computational scheme for the primal Nemt

Hy, i.e, directions under the special network setting. For general
S| network settings, however, the SMW-based approach usually
T - =~ - fails because the;-vectors are not orthogonal to each other
RS Cy due to the arbitrary interference relationships. As a tesul
H;Zl = : : ) (23) the Schur complemedt+ VD~ U becomes a dense matrix,
| X, C; which yie_lds little speci?l strlljcture to e_xploit, and mf_;lklee
| alT 6% T computation of I+ VD~U) ! equally difficult comparing to

A R that 01‘H,§1 itself. To handle this challenge, we now propose
where the closed-form expressions &rX;, C;, and T are a matrix-splitting technique to compute the primal Newton
respectively stated in [21, Egs. (29)—(32)] due to limitpdee. directions for general network settings.

Simply speaking, matrix-splitting is a generic framework

Thanks to the nice closed-form expressionsHf', we A : , . .
. . for solving linear equation systems iteratively [22]. Cioles
can show that the primal Newton directions can be compute . . . ;

s . . . a consistent linear equation systda = d, whereF is non-
distributedly as stated in the following theorem:

singular. SplitF' asF = F;—F5, whereF is also nonsingular.
Theorem 2. In the special wireless network setting (19), giveRlearly, there are multiple choices in splittil§. A good
dual variablesw, the Newton directiom\s, Axl(f), At; for splitting strategy, however, is to choose Bipthat is easier to
each source rate, link flow ratez”, and link time-sharing invert thanF. Then, it follows thatz = (F;'F2)z + F 'd.

l . . .
variable ¢, can be computed using local information at eachow, let z0 be an arbitrary starting vector and consider the

source nodes and link [, respectively, as follows: following iterative scheme [22]:
N sp(pssUp(sy) +1—spwdl) 1) o 2" = (F{'Fy)z" + F7'd, k> 0. (27)
Sf = s
1= ps3Uf (sy) It can be shown that the iterative scheme in (27) converges to
) (P2 (x(f)) 1 1 the unique solutiors = F~d if and only if p(F; 'Fs) < 1,
Az = () (1 — (1= Ru) H)A(l |2) (W - 5—+ wherep(-) represents the spectral radius of a matrix.
: v ! Now, we apply the matrix-splitting idea in (27) to compute
w%z;)(l) _ w}({fx)(l)) T Rz,1($l(f))2 <_ -5 w) _ Ay"”. But befor_e deriving the details of the matrlx splitting
ti 1 scheme, we point out that due to the block diagonal structure

are still able to computels; in closed-formby (24) even

) between theS-block and the rest of, (cf. Eg. (18)), we
,(25)

F
e L Loy o)
S (=R < 5T Utk WRx(1) _ : ) .
» x ! in general wireless network settings. As a result, the matri

f'=1L#f l
F splitting scheme is only needed to compulel(f) and At;.
At = Ry, Z(x(f)y L _ l +w(f) _ ¥ Now, we let H, denote the submatrix block obtained by
’ ) : :vl(f) o Tx(0) Rx(l) removingS and its associated rows and columns from (18).

11 We define the following matrices\), = Diag {diag {H } }
(— - = — w) , (26) and Q, = H; — Ay. Further, letQ, be a diagonal matrix
! with diagonal entries given byf2;);; = =, [(€2)i;]. Then,

where the expressions &f ; and R; » are respectively stated we have the following result:

in [21, Egs. (26)—(27)] due to space limitation. — L — _
o _ Lemma 3. Let H;, be split asH;, = (Ay + aQy) — (o —
Sketch of the ProofThe basic idea of proving Theorem 23,), wherea > 1 is a parameter for tuning convergence
is to apply Theorem 1 and exploit the second-order prosperitspeed. Then, the sequengay”® }>°_, generated by

(f () impli — —
of thea, and}) vectors to smpln‘y the result. We relegate A}ZIZH = (Ag + €)1 (a2 — Q) AyE
the proof details to [21, Appendix D]. [ ] I L .
+ (A +afd) " (=Vfu(y") —M"w") (28)

Remark 2. In addition to providing closed-form expressions .
for primal Newton directions, Theorem 2 offers an interggti converges taAy" in (11) asm — oco.

networking interpretation. Here, we can think of the difiece Sketch of the proof:The key idea of proving Lemma 3
of the dual variables(w(TQl — ng)(l)) in (25) and (26) as is to verify that both the sum and difference of the two

“the queue length difference” in the back-pressure algamit components in the splitting scheme are striatliggonally



dominant Then, the result follows from Lemmas 4.7 and 4.8 1) Dual updates: The Special Network Setting. Dual

in [21]. We relegate the proof details to [21, Appendix Bi. updates in the special setting is relatively easier thaks t
Remark 3. Lemma 3 is inspired by, and is also a generaliza{—E: t?llgssv(\j/i-;c;rs”t]rtrjitsﬁrlésoﬁlkH‘ITI\-/TT]e;r:gml\}I.HB‘ylg)}pl((; 2?9

I X~ it i k - k H

tion of, the matrix-splitting scheme in [10]. In both schesmeésee [21, Egs. (65)—(66)]), it can be shown that the disteibu

the basic idea is to construct a diagonal nonsingular matri : . . .
. . _ ual updates can again be done following the basic matrix-

for which the inverse can be distributedly computed. Howeve ~ " . . .
Splitting scheme in (27) plus a convergence speed tuning

our scheme is parameterized bywhich enables convergence rameter. Due to space limitation, we refer readers to [21
speed tuning in (28), while the scheme in [10] can be Viewgf@eorem 4 17u] for fu?ther dlet;ilsl » W '

as a special case of our scheme with= 1. 2) Dual updates: General Network Settings. As men-
Remark 4. We show in [21, Lemma 4.10] thatdf; < a2, tioned in C2), the basic matrix-splitting technique faifsthe
then pa, < pa,. This suggests that in order for (28) togeneral settings. To address this challenge, we propose/a ne
converge faster, one should choose a smalleprovided that double matrix-splittingechnique to computeMH; ‘M7) !

(28) is convergent. We point out that the technical conditioand —MH, !V f, (y*) and show that they can also be imple-
a > 3 in Lemma 3 is a sufficient condition to guaranmented in a distributed fashion. In what follows, we outline

tee the convergence of (28). In practical implementationge key steps. First, considdH, 'M”, for which we have
a < % could be used for faster convergence as long age following decomposition result:
p((Ar + af2) (a2, — Q) < 1. This eigen-spectrum

condition, however, is more inconvenient to check.
Next, we show that the matrix-splitting scheme in Lemma 3 MH;'M” = B,S™'B} + MH,, M7, (31)

can be implemented in a distributed fashion to compute th% B A BT T and M 2 Diae! A AT
primal Newton directions. We state the result as follows: WN€T€Ho = [B”,07]" an = Diag{[A1,..., Ar], 17},

Lemma 5. MH,; 'M” can be decomposed into:

_ Due to the (block) diagonal structure BfandS !, the term
BoS™'B! in (31) can be easily computed in a distributed
fashion at each source node. However, the main challenge
arises fromﬁﬁ:ﬁT, where we do not have closed-form

Theorem 4. In general wireless settings, Iéia:l(fy)l, andAt; .,
denote the the values dixl(f) and At; in the m-th iteration,
respectively. Given dual variables”, the Newton directions
Aa:l(f) and At; can be iteratively computed as follows:

) L1 expressions foFL, . Fortunately, a closer look &dH, M7
fH  _ (f) (f) (f) i into:
AIl,m+1 W s+ <ﬁ_ 5_l+wa(z)_wa(z)>] , (29) reveals that it can be further decomposed into:
b L e MH, 'M” = MZ;, and Z,=H, M.

1 1 C'll L L
Atimt1 = 0i1 Qi + (; + ( 5 )) - “’] + (30) Further,z, = H, 'M” can be written as'" = H, 'm,,

v b=t . (k) . - .

o) _ ~ Vj, where z; and m; are thej-th columns inZ; and

where P17, B5, Qi1, and Qs 2 are, respectively, stated iny; regpectively. Now, it is important to recognize that the

Egs. (43)—(46) in [21] due to space limitation. expressiorz;k) = ﬁ;lfflj is in a similar form as in (11).

Sketch of the proof:-Theorem 4 can be proved by using4ence,z!") can be computed by the basic matrix-splitting
the “arrow-head” structure o, and exploiting the second- technique similar to that in the primal Newton directions
order properties of; andb/) to compute the element-wisejteration indexk is omitted for simplicity):
expansion of (28). See [21, Appendix G] for more detaik. N _ _ N )
D. Distributed Computation of the Dual Variables Pr'toposmon 6 (First layer of]:natnx-sphttmg) Letz;* ~and
Recall that the dual variables’* can be computed by zj( ) denote the entries in'" (tfr}at correspond to variables
solving the linear equation system in (12). However, thetd”) andt,, respectively. LetfifT ) andzﬁﬁ denote then-th
remain two key technical challenges in dual updates: - ’ )

Cl) MH,;lMT (i.e., the weighted Laplacian matrix) is
clearly a dense matrix and it is intractable to derive angetb

. . (m(f)) (t:) . (k
iteration values ofz;"* " and z;’, respectively. Thenz;
can be iteratively computed by:

form result for its inverse even in the special setting. @y 1 [ oy )/ }

C2) Due to the lack of closed-form expressions M ' in Fjmt1 = Pl({) Pg )+ RG] Vi, f, (32)
the general settingyIH, 'M” and—MH, 'V f,(y*) cannot 1
be written explicitly in terms of thes-, x-, and t-variables. zj(t,,iﬂ = Ot [Qis(d) + Qiald)], Vi, (33)

As a result, the basic matrix-splitting technique in (27)sfa
tﬁ ‘?OZTPUFS(MZIg;ll\TIT)fl and —MH, 'V, (y"), letalone where P4, @, , are the same as in Theorem #(j),
their distributed implementations. B A s o . .

In what follows, according to the different approaches tIODIv4 (7): Qisl7), Qia(y) are stated in 21, Egs. (52)~(55)]
obtainH,jl, we again classify the dual updates into special and The proof of Proposition 6 is similar to that of Theorem 4,
general settings and combat the above difficulties sepprateand we regelate the details to [21, Appendix H].



Remark 5. We point out that the-variables in (32) and (33) Algonthm 1 Distributed Newton’s Method for Problem CLO.

are obtained by using theamematrix-splitting scheme as in 'nitiaE"Zélﬂoni Al ch e val )y
(29) and (30). Therefore, they can be computed along with the aﬁ; . S@;"rce and link: Choose some appropriate valuesyfor; ™, v/,

primal Newton directions in (29) and (30) by shariﬁ’é{) and 2. Each node: Choose appropriate valuesdéf’, Vf andw.

Q; 1, thus saving a significant amount of computing resourcedain Iteration: o ) ) o
' 3. Primal Newton directions (special setting)pdateAsy, Axz;”’, andAt,

. . —~ ] —~ . ; :
With z(k), it can be shown thd\/IHk M7 — MZ,. can be us.lng (24), (25), .and .(26) at each sourf:e node and link, ws(;?)ky.
J 4. Primal Newton directions (general settingd)pdate Asy, Axz,”’, and

computed distributedly as follows (see [21, Appendix 1] for™ At, using (24), (29), and (30) at each source node and link. céspl.

proof details): Meanwhile, compute and storg*’, v, using (32) and (33); compute
and storeg using [21, Proposition 4.14].

Proposition 7. Let ﬂj(”)’ n # Dst(f), be an index function 5 pq updates (special settingUpdate w$”) and w using [21, Theo-
such that3y(n) = n if n < Dst(f) or n — 1 if n > Dst(f). rem 4.17] at each node.

Let (Mzk)jlj2 be the entry in th@'l-th row ande_Commn 6. Dual updates (general settings)First compute ﬁﬁ;lﬁT using

(k) ;
of MZy. Then,(MZy);,;, can be distributedly computed as (3111_&1?? the z; -VeCto_rS obtained fro,n_n Step_ 4. Also, compute
—MH,, V.t fu(y®) using [21, Proposition 4.15] and thg-vector

(Mzk)jljz - obtained from Step 4. Then, updatéLf) andw using Proposition 8.
(=) () 7. Terminate the algorithm if a predefined run-time limitémched or if the
Zle(’)(n) Zj2l - Zlel(n) Zj2l ) Newton decrement criterion is satisfied. Otherwise, go #p & for the
if j, = (f o 1)(]\7 - 1) +nn 7& Bf (Src(f)) special setting case or to Step 4 for the general setting case
andjo = (f'—1)(N —-1)+n/,
(s5) (") _ («;7) . : :
25,0+ Zle@(n) Zja ZlEI(n) Zja (34) So far, we have derived the main components of our dis-
if j1=(f—1)(N—=1)+n,n# Bs(Src(f)), tributed Newton’s method. We point out that there are sévera
andj, = (f' = 1)(N — 1) +n/, topics remained to be discussed for its implementation, e.g
I _(t) ¢ . information exchange scale, initialization of the algomit,
dic1 g, i 1= (N = 1)F +1, . L ; .
: stopping criterion, step-size selection, etc. We refedees
andjo=1,...,(N - 1)F + 1.

to [21, Section 4.5] for further discussions on these tapics
. . To conclude this section, we summarize our distributed
-1 k . ,
Next,_we Eon5|der—MHk Viunly )\ﬂﬁlfh can be decom Newton’s method in Algorithm 1. In Algorithm 1, after initi-

osed into BoS™1(—Vsf.(y") + MH, (—Vxtfu(y")) ation i : :
p 0 sJuly !/ k xtJulY "))y alization in Steps 1-2, Steps 3 and 4 are for computing primal
whereVs f,(y") and V.« f,(y") represent the partial deriva-Newton directionsy* in (11) under the special and general
tives with respect to the-variables and remaining Va“ablessettings respectively: while Steps 5 and 6 are for dual tgsda
respe~ct|vglly. FoIIowmg the same approach, it can be showp: i (12) under the special and general settings, respegtivel
that BoS (—stAy_Z)I can be distributedly computed atthe main iteration stops if the criterion in Step 7 is met.
each source nod®H, (—Vx+f.(y*)) can be further de-
composed into: V. NUMERICAL RESULTS

Vi _M B his section, we present some numerical results to
MH —Vx_ yk - Mg7 g = H _vx. yk . ln thi ’ p
e +fuly) e +fuly) demonstrate the efficacy of our proposed distributed Newton

Then, the distributed computations gfand Mg follow from ~method. First, we examine the convergence speed of the
the same approach as in Propositions 6 and 7. We omit fpRfameterized matrix-splitting scheme in computing theak
results here for brevity and refer readers to [21, Propodiewton directionsAy* and dual variablesv*. We use an 8-
tions 4.14 and 4.15] for details. Finally, based on the abo@de 3-session network as an example. Byt andw*, we
results, we can compuTH; ‘M7 and —-MH; 'V, (y*) Varya f_rom 0.1to 1. In both cases, the matrlx-spllttm_g scheme
without explicitly knowingH *. is terminated when the error between the true solutioapf
Now, we are ready to use the second layer of matrif? EQ: (11).(res.p.,w’“ in Eq. (12)) and the matrix-splitting
splitting to compute dual updates. To this end, we defirﬂ%sed solution is less thanx 10~°. The errors forAy* and
the following matricesIT), = Diag{diag{MH, 'M7}} and W~ are plotted (in log scale) in top and bottom halves in Fig. 1,
U, = MH;IMT — 1. Also, let ¥ be the diagonal matrix respectively. We can see that for all valuescgfthe errors
with diagonal entries given af¥);; = > |(®),;]. Then, decrease exponentially. Also, the smaller the valuerothe

adopting the same approach as in Lemma 3, we have  faster the convergence speed. For example, when0.1, the
number of iterations is approximately half of that when= 1
Proposition 8 (Second layer of matrix-splitting) Split (9 vs. 15 in the primal case and 27 vs. 53 in the dual case).
MH; 'M” as MH, "M” = (IT), + a®}) — (a%; — ¥}), This confirms our analysis of the choice@fin Remark 4. To
wherea > 3 is a parameter for tuning convergence speegiustrate the convergence behavior of our distributed Nevs
Then, the_sequencf'«wﬁl}%o:l generated byw?, . ,=(II,+ method, we use a network example as shown in Fig. 2, where
aW;,) (oW~ W)Wk +(M+a®,)~(-MH, 'V /.(y*)) five nodes are distributed in a region &0m x 800m. The
converges tow" in (12) asm — cc. network is assumed to be operating under the special setting
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Fig. 1. Convergence behavior of the matrix-splitting  Fig. 2. A five-node two-session network.

scheme.

with normalized link capacity. There are two sessions in the]
network: N5 to N4 and N1 to N3. We adopig(ss) as our
utility function, which is a well-known model for “propoanal
fairness” [1]. The convergence behavior is illustratedim. B,
which shows both the objective values of the approximatin(ig6
and the original problems. It can be seen that our propos
algorithm takes only 27 iterations to converge. To compaire o
algorithm with the subgradient method, we randomly gererat’l
50 networks with 30 nodes and six sessions. For these 50
examples, the mean numbers of iterations for our method ang
the subgradient method are 720.58 and 53870.12, resdgctive

i . 9]
which shows that our proposed algorithm converges two erde['
of magnitude faster.

(5]

[10]
VI. CONCLUSION

In this paper, we developed new second-order distributﬁq]
methods for cross-layer optimization in wireless netwokke
first considered a special network setting where all linksunu
ally interfere with each other. In this case, we dericbused- [12]
form expressionfr the Hessian inverse, which further yielded
a distributed implementation of the Newton’s method. Fd#3l
general wireless networks where the interference relstims
are arbitrary, we proposed @ouble matrix-splitting scheme
to compute the primal Newton directions and dual variables,
respectively, which also led to a distributed implemeotati [15
of the Newton’s method. Collectively, these results serse a
the first building block of a new second-order theoretical
framework for cross-layer optimization in wireless netlsor
Distributed second-order methods for wireless networlanis
important and yet under-explored area. Future researdbstop
may include to incorporate signal to interference plus anois[;l7
ratio (SINR) based interference models, to analyze the é@npa
of inexact line searches on convergence, to design efficiék
scheduling schemes, and to consider stochastic traffic i$10dF19]

[14]

[16]
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