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Abstract

Optimization-based algorithms for joint congestion control and routing have received a sig-

nificant amount of attention recently. To date, however, most of the existing schemes follow a

key idea called the back-pressure algorithm. Despite having many salient features, the first-order

subgradient nature of the back-pressure based congestion control and routing necessitates small

step-sizes, hence slowing down convergence and resulting in poor delay performance. To overcome

these limitations, in this paper, we make a first attempt at developing a second-order joint con-

gestion control and routing optimization framework that offers rate-optimality, queuing stability,

fast convergence, and low delays. Our contributions in this paper are three-fold: i) we propose a

new second-order joint congestion control and routing framework based on a primal-dual interior-

point approach; ii) we establish rate-optimality and queuing stability of the proposed second-order

method; and iii) we show how to implement the proposed second-order method in a distributed

fashion.

1 Introduction

With the rapid integration of new applications and technologies, recent years have witnessed a growing

challenge in making communication networks work more efficiently. To date, while there exists a

large body of work on joint congestion control and routing for both wireline and wireless networks

(see, e.g., [1–4] and many other follow-ups and extensions), most of these schemes follow a key idea

called the “back-pressure” algorithm, which traces its roots to the celebrated paper in [5] published

more than two decades ago. The enduring popularity of the back-pressure algorithm is primarily

due to: i) a provable throughput optimality, ii) elegant cross-layer extensions, and iii) a distributed

queue-length differential based routing that stabilizes all queues in the network. Researchers have

also uncovered a fundamental connection between the back-pressure based congestion control and

1



the Lagrangian dual decomposition framework plus the subgradient method in classical nonlinear

optimization theory [1, 3], where (scaled) queue-lengths play the role of Lagrangian dual variables

and the queue-length updates correspond to subgradient directions. This enlightening insight has

unified techniques that originated independently from control and optimization theory.

However, despite all the salient features, the subgradient nature of the back-pressure based conges-

tion control and routing schemes turns out to be a factor that plagues their performance in practice.

Being a first-order method (subgradients can be viewed as a first-order support of the dual function),

back-pressure based joint congestion control and routing schemes neglect the curvature of the ob-

jective function contour, which is characterized by the eigenvalue condition number of the Hessian

matrix that usually becomes increasingly ill-conditioned as the iterates approach an optimal solu-

tion [6]. As a result, it necessitates a small update in each iteration [1–4,7], which subsequently slows

down convergence and undermines the performance of optimization. This limitation motivates us to

pursue a second-order design approach for joint congestion control and routing. The fundamental

rationale behind our approach is that, as in classical nonlinear optimization theory [6], by considering

the second-order Hessian information in congestion control and routing, we can expect to alleviate

the inherent ill-conditioned behavior of first-order methods, thus leading to much faster convergence

and hence better performance in practice.

However, due to a number of technical difficulties, developing a second-order congestion control

and routing optimization theory is highly challenging and, to our knowledge, results in this area

remain scarce. First, unlike the relatively obvious queue-length based connection between the back-

pressure and the subgradient algorithms, it remains unclear how one can utilize the insights drawn

from existing static second-order network optimization algorithms [8–11] to guide the design of joint

congestion control and routing in practice. The main challenge here is that most of the algorithms

in [8–11] operate with long-term rates rather than evolve with actual time instants. Also, their con-

nection to observable network state information (e.g., queue-lengths, etc.) is still missing. Second,

after constructing a second-order scheme, it remains a difficult task to prove its rate-optimality and

queuing stability. This is because the incorporation of the second-order Hessian information signifi-

cantly complicates the computational schemes and necessitates new theoretical approaches in perfor-

mance analysis. Lastly, how to implement the developed second-order scheme in a distributed fashion

(comparable to first-order methods) is still an open question. Similar to the (static) second-order

optimization algorithms in [8–11], one would have to face the challenges arising from decentralizing

the Hessian and Laplacian matrix inverse computations.

The key contribution of this paper is that, for the first time, we successfully develop a second-order

joint congestion control and routing framework to address the aforementioned technical difficulties

and establish an analytical foundation that offers fast convergence and high performance. The main
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results and technical contributions of this paper are as follows:

• We propose a second-order joint congestion control and routing framework based on a primal-dual

interior-point approach, in which we modify the step-size control strategies such that the resultant

scheme is well-suited for implementation in practical networks. Our primal-dual approach exposes

a deep connection between observable network state information and the primal-dual interior-

point optimization theory, which itself is an active research field in operations research today (see,

e.g., [12] for a survey).

• We establish the rate-optimality and the queuing stability of the proposed second-order framework.

Our theoretical analysis unveils the fundamental reason behind the fast convergence in the proposed

second-order framework. Interestingly, our analytical results naturally lead to a rate-optimality and

queue-length trade-off relationship governed by the barrier parameter of the interior-point method.

We compare this trade-off relationship to those in first-order methods and contrast their similarities

and differences, thus further advancing our understanding of both first- and second-order methods

in network optimization theory.

• We suggest several approaches to implement the proposed second-order method in a distributed

fashion. In particular, for the distributed dual Newton direction computation (the most challenging

part in our second-order method), we propose a new Sherman-Morrison-Woodbury (SMW) based

iterative approach. We show that, on a L-link network, the SMW-based approach obtains the

precise solution in 2L iterations, rather than asymptotically as in [8–10].

Collectively, our results in this paper contribute to an exciting development of a cross-layer net-

work control and optimization theory with second-order techniques. The remainder of this paper

is organized as follows. In Section 2, we review related works. Section 3 introduces the network

model and problem formulation. Section 4 presents the algorithm and performance analysis of our

second-order scheme. Section 5 develops the principal components of the distributed computations.

Section 6 presents some numerical results, and Section 7 concludes the paper.

2 Related Work

In this section, we review the state-of-the-art of both first- and second-order methods that are closely

related to this paper. As mentioned earlier, there is a large body of work on first-order back-pressure

based joint congestion control and routing (e.g., [1–4, 7, 13]). Among these works, the scheme in [3]

is the most related and can be directly compared to our work since it is also a primal-dual based

controller, where the primal and dual variables are updated jointly (hence relatively more convenient

to implement in practice). Thanks to the second-order structure, our approach requires a much less
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conservative step-size selection, while achieving a steeper negative Lyapunov drift rate and inducing a

much faster (three orders of magnitude numerically) convergence than in [3]. On the other hand, the

schemes in [1,2,4] can be categorized as dual-based controllers, where an inner subproblem defined in

terms of primal variables needs to be solved for each fixed set of dual variables. Thus, a counterpart

of primal-dual step-size selection does not exist. However, similar Lyapunov drift rate analysis and

numerical results also indicate a slow convergence performance due to their first-order nature.

In the second-order domain, recent (centralized and distributed) interior-point based methods for

network optimization can be found in [8–11,14–17]. In particular, significant efforts have been made

to decentralize the second-order computations, including a Gaussian belief propagation technique

in [15–17] and a matrix-splitting approach in [8] for flow control (with fixed routing); and a consensus-

based local averaging scheme for minimum cost routing (with fixed source rates) in [11]. Finally, in

our previous work [9,10], we developed distributed second-order methods for cross-layer optimization

(joint flow control, routing, and scheduling) in both wireline and wireless networks. However, all these

second-order methods operate with long-term rates and do not consider queuing stability. Moreover,

they were all based on the classical barrier interior-point approach and none of them adopted the

latest advances in primal-dual interior-point theory [12]. Therefore, the development of our primal-

dual second-order method in this paper is novel.

3 Network Model and Problem Formulation

We first introduce the notation style in this paper. We use boldface to denote matrices and vectors.

We let AT denote the transpose of A. Diag {A1, . . . ,AN} represents the block diagonal matrix with

A1, . . . ,AN on its main diagonal. We let (A)ij represent the entry in the i-th row and j-th column of

A and let (v)m represent the m-th entry of v. We let IK denote the K-dimensional identity matrix,

and let 1K and 0K denote the K-dimensional vectors whose elements are all ones and zeros (“K”

may be omitted for brevity if the dimension is clear from the context). We let λmin{A} and λmax{A}
denote the smallest and largest eigenvalues of A, respectively.

Network model: We consider a time-slotted communication network system with time slot

units being indexed by t = 0, 1, 2, . . .. As shown in Fig. 1, we represent the communication network

by a directed graph G = {N ,L}, where N and L are the sets of nodes and links, with |N | = N

and |L| = L, respectively. We assume that G is connected. There are F end-to-end sessions in

the network, indexed by f = 1, . . . , F . Each session f has a source node and a destination node,

represented by Src(f),Dst(f) ∈ N , respectively. To avoid triviality, we assume that Src(f) ̸= Dst(f)

for all f . The data of session f travel from Src(f) to Dst(f) through the network, possibly via

multi-hop and multi-path routing.
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Figure 1: An illustrative example of the network model.
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Figure 3: An illustrative example of routing

at an intermediate node.

Congestion control: As in [2, 3], we assume that the source node Src(f) has a continuously-

backlogged transport layer reservoir that contains session f ’s data, as illustrated in Fig. 2. Similar

to a valve, in each time-slot t, a transport layer congestion controller determines the amount of data

sf [t] to be released from this reservoir into a network layer source queue, where the data await to

be routed to node Dst(f) through the network. In other words, {sf [t]} acts as the arrival process

to the source queue. To control the burstiness, we let sf [t] ≤ smax
f , ∀t. We let s̄f ≥ 0 denote

the time-average rate at which data of session f is injected at Src(f) under congestion control, i.e.,

s̄f = limT→∞
1
T

∑T
t=0 sf [t]. Each session is associated with a utility function Uf (s̄f ), which represents

the utility gained by session f when data is injected at rate s̄f . We assume that Uf (·) is strictly

concave, monotonically increasing, and twice continuously differentiable.

Routing: We let x
(f)
l,[t] ≥ 0 denote the rate offered to route session f ’s data in time-slot t at

link l, as shown in Fig. 3. We let x̄
(f)
l , limT→∞

1
T

∑T
t=0 x

(f)
l,[t] represent the time-average routing rate

of session f at link l. We use s̄ , [s̄1, . . . , s̄F ]
T and x̄(f) , [x̄

(f)
1 , . . . , x̄

(f)
L ]T to group all congestion

control and session f ’s routing rates. We denote the capacity of link l as Cl and assume that it is

fixed, which is an appropriate model for wireline networks. We note that the theoretical results and
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algorithms in this paper can be readily extended to wireless networks by replacing Cl with the convex

hull of the wireless link capacity region, similar to [1–4].

As in [1,3,18], we define the network capacity region as the largest set of congestion control rates

s̄ such that there exists a routing policy for which the time-average routing rates {x̄(f), ∀f} satisfy
the following constraints:∑

l∈O(n)

x̄
(f)
l ≥

∑
l∈I(n)

x̄
(f)
l + s̄f1f (n), ∀f, ∀n ̸= Dst(f), (1)

F∑
f=1

x
(f)
l,[t] ≤ Cl, ∀l, t, (2)

where O (n) and I (n) represent the sets of outgoing and incoming links at node n, respectively;

1f (n) is an indicator function that takes the value 1 if n = Src(f) and 0 otherwise.

For convenience, we use a node-arc incidence matrix (NAIM) [19] A(f) ∈ R(N−1)×L and a source

vector b(f) ∈ RN−1 to represent the network topology. Let Tx(l) and Rx(l) denote the transmitting

and receiving nodes of link l, respectively. The entries (A(f))nl and (b(f))n, n ̸= Dst(f), are defined

as follows:

(A(f))nl=


1 if n = Tx(l),

−1 if n = Rx(l),

0 otherwise,

(b(f))n=

1 if n = Src(f),

0 otherwise.

Then, the constraint in (1) can be compactly written as: A(f)x̄(f) − s̄fb
(f) ≥ 0, ∀f = 1, 2, . . . , F .

Queuing stability: We assume that each node maintains a separate queue for each session f ,

as shown in Fig. 3. We let q
(f)
n,[t] ≥ 0 represent the amount of data in session f ’s queue at node n

at time t. Since data leave the network upon reaching destinations, we have q
(f)
Dst(f),[t] = 0, ∀t. The

evolution of q
(f)
n,[t], n ̸= Dst(f), is given by:

q
(f)
n,[t+1]=

(
q
(f)
n,[t] −

∑
l∈O(n)

x
(f)
l,[t]

)+
+
∑

l∈I(n)̂

x
(f)
l,[t] + sf,[t]1f (n), (3)

where (·)+ , max{0, ·} and x̂
(f)
l,[t] is the actual routing rate. Note that x̂

(f)
l,[t] ≤ x

(f)
l,[t] since Tx(l) may

have less than x
(f)
l,[t] amount of data to transmit. Let q[t] , [q

(f)
n,[t], ∀f, ∀n ̸= Dst(f)]T group all queue

lengths at time t. In this paper, we adopt the same notion of queuing stability as in [3]: Under a

congestion control and routing scheme, we say that the network is stable if the steady-state total

queue length remains finite, i.e., lim supt→∞
∑N

n=1

∑F
f=1 q

(f)
n,[t] ≤ ∞.

Problem formulation: In this paper, our goal is to develop an optimal joint congestion control

and routing scheme to maximize the total utility
∑F

f=1 Uf (s̄f ), subject to the network capacity region
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constraints and that the network is stable. Putting together the models presented earlier yields the

following joint congestion control and routing (JCCR) optimization problem:

JCCR:

Maximize

F∑
f=1

Uf (s̄f )

subject to 1) A(f)x̄(f) − s̄fb
(f) ≥ 0, ∀f,

2)

F∑
f=1

x
(f)
l,[t] ≤ Cl, ∀l, t

3) Stability of all network queues.

As mentioned earlier, several first-order schemes based on the back-pressure idea [5] have been

proposed (e.g., [1–4]) to solve Problem JCCR. However, the convergence behavior of these first-order

schemes is slow, which could lead to poor performance in practice. In what follows, we will investigate

a new second-order joint congestion control and routing framework.

4 A Second-Order Congestion Control and Routing Optimization

Framework

In Section 4.1, we first present our second-order joint congestion control and routing algorithm along

with the main results on rate-optimality and queuing stability. Then, in Section 4.2, we explain

the design rationale of our second-order approach. Section 4.3 focuses on performance analysis and

provides the proofs for the main theorems in Section 4.1. In Section 4.4, we discuss the key insights

and intuition related to the results in Section 4.1.

4.1 The Algorithm and Main Theoretical Results

We start with some necessary notation that will be used throughout the paper. First, we use

y[t] to denote all instantaneous joint congestion control and routing decisions at time t, which are

arranged in the following link-based order: y[t] ,
[
s1,[t] · · · sF,[t], x

(1)
1,[t] · · ·x

(F )
1,[t], · · · , x

(1)
L,[t] · · ·x

(F )
L,[t]

]T
.

We let M ,
[
B A1 · · · AL

]
, where B and Al are defined as B , Diag{b(1), . . . ,b(F )},

and Al , Diag{−a(1)l , . . . ,−a(F )
l }, and where in the definition of Al, the vector a

(f)
l is the l-

th column of the matrix A(f) in Problem JCCR (i.e., A(f) =
[
a
(f)
1 ,a

(f)
2 , . . . ,a

(f)
L

]
). Also, we let

N , Diag
{
0TF ,1

T
F , . . . ,1

T
F

}
∈ R(L+1)×(L+1)F and c , [0, C1, . . . , CL]

T ∈ RL+1. Then, it can be

verified that the first two constraints in Problem JCCR can be compactly written as My[t] ≤ 0 (in
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each time slot rather than on average) and Ny[t] ≤ c. Next, we define the following µ-scaled barrier

augmented objective function:

fµ(y[t]) ,− µ
F∑

f=1

Uf (sf,[t])−
L∑
l=1

log

(
Cl −

F∑
f=1

x
(f)
l,[t]

)

−
F∑

f=1

log(sf,[t])−
L∑
l=1

F∑
f=1

log(x
(f)
l,[t]), (4)

where µ > 0 is called the barrier parameter (its meaning will be clear soon in Section 4.2). We

let g[t] , ∇fµ(y[t]) and H[t] , ∇2fµ(y[t]) denote the gradient vector and Hessian matrix of fµ(·)
evaluated at y[t], respectively.

Next, we introduce dual variables p
(f)
n,[t] > 0, ∀f , ∀n ̸= Dst(f) to be associated with the constraint

in (1) in each time slot t (i.e,. replacing x̄
(f)
l and s̄f by x

(f)
l,[t] and s

[t]
f , respectively). These dual variables

play the role of prices charged to session f for using node n. We let p[t] = [p
(f)
n,[t], ∀f = 1,∀n ̸=

Dst(f)]T group all dual variables. We further introduce two diagonal matrices: P[t] , Diag
{
p[t]

}
and Q[t] , Diag

{
My[t]

}
. We note that Q[t] is intrinsically related to queue-length evolutions, since

each diagonal entry of Q[t] is of the form: q
(f)
n,[t] −

∑
l∈O(n) x

(f)
l,[t] +

∑
l∈I(n) x

(f)
l,[t] + sf,[t]1f (n) (cf. (3)).

With these notation and assuming that the initial primal and dual variables are strictly feasible at

time-slot t = 0 (i.e., My[0] < 0, Ny[0] < c, and p[0] > 0), our proposed second-order algorithm is

illustrated in Algorithm 1.

Remark 1. Several remarks on the properties of Algorithm 1 are in order: i) Algorithm 1 is a primal-

dual scheme in which the primal and dual variables are updated jointly as in (7) (more convenient

for implementation in practice). This is unlike dual-based controllers (e.g., [1, 2, 4]), where a cou-

pled subproblem defined in terms of primal variables is solved in each dual iteration. ii) Algorithm 1

operates on a “time-slot by time-slot” basis and captures the queue-length evolution Q[t], thus expos-

ing an observable network state information for practical implementations. In contrast, all existing

second-order methods in [8–11,14–17] only optimize “long-term rates” and fail to provide such a key

connection. iii) For ease of performance analysis in this section, the primal-dual Newton directions

in (5) and (6) are expressed in matrix form for now. Their explicit and distributed computational

schemes will be derived later in Section 5.

The following theorem says that the average rate obtained under Algorithm 1 can be made

arbitrarily close to the optimal solution by increasing the barrier parameter µ.

Theorem 1 (Rate-optimality). Let ȳ∗ represent the optimal average rate solution to Problem JCCR.

Under Algorithm 1 and for some given µ, if the step-size π scales as O( 1µ), then there exists some

constant B ∈ (0,∞) independent of µ such that lim supT→∞
∣∣ 1
T

∑T−1
t=0 y[t] − ȳ∗∣∣ ≤ B√

µ .
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Algorithm 1 A second-order joint congestion control and routing optimization algorithm (for a given

µ).

1. In time-slot t, determine the second-order primal (joint congestion control and routing) and dual

(pricing) Newton directions ∆y[t] and ∆p[t] as follows:

∆y[t]=−(H[t]−MTQ−1
[t] P[t]M)−1(g[t]−MTQ−1

[t] 1), (5)

∆p[t] = −(MH−1
[t] M

T −P−1
[t] Q[t])

−1×

[MH−1
[t] (g[t] +MTp[t])− (Q[t] +P−1

[t] )1]. (6)

2. Update primal and dual variables jointly as:[
y[t+1]

p[t+1]

]
=

([
y[t]

p[t]

]
+ π

[
∆y[t]

∆p[t]

])
SM
ϵ

, (7)

where 0 < π ≤ 1 is an appropriate step-size, and (·)SM
ϵ

represents the projection onto the set SMϵ
defined as:

SMϵ ,
{
(y,p)

∣∣∣∣∣ ϵ1 ≤ y ≤M1, My ≤ −ϵ1,
Ny ≤ c− ϵ1, p ≥ ϵ1.

}
, (8)

where the constant ϵ > 0 can be made arbitrarily close to zero and the constant M > 0 is used

for burstiness reduction. Let t← t+ 1 and go to Step 1.

For a time-varying matrix A[t], we let λmin{A} , inft
{
λmin

{
A[t]

}}
. The following proposition

explains why Algorithm 1 enjoys a fast convergence performance.

Proposition 2 (Lyapunov drift rate). If ȳ is outside of [ȳ∗− B√
µ , ȳ∗ + B√

µ ], where ȳ∗ and B are as

defined in Theorem 1, then there is a negative Lyapunov drift that drives ȳ toward this interval, and

the drift rate R can be lower bounded by R ≥ λmin{H}
λmin{H−MTQ−1PM} . Particularly, R ≥ 1 as µ→∞.

Proposition 2 highlights that the second-order scaling term (H[t] −MTQ−1
[t] P[t]M)−1 in (5) is

crucial to the average rate convergence of Algorithm 1. Without this term (replacing it by an identity

matrix I), we essentially “rediscover” a first-order back-pressure based method (with MTQ−1
[t] 1 being

the “pressure differential”). Proposition 2 indicates that, thanks to the appearance of this term in the

denominator of R, the “pulling force” of the negative Lyapunov drift is strong, allowing our scheme to

approach the desired region at least as fast as at a constant rate R that is insensitive to the objective

function contour. In contrast, the Lyapunov drift rate in first-order methods can be characterized

by inft{λmin{Diag{−U ′′
f (sf,[t]), ∀f}}} (see, e.g., [3, Eq.(32)] and the discussion thereafter), which is

clearly sensitive to the objective function contour and could be very small (i.e., induce stalling).

The next theorem states that, under Algorithm 1, the queue lengths are asymptotically bounded,
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and hence induce queuing stability for the network.

Theorem 3 (Queuing stability). Under Algorithm 1 and for some given µ, letting ϵ = O(1/µ), there

exists a constant K <∞ that scales as O(µ) such that lim supt→∞
∥∥q[t]

∥∥ ≤ K.

The proofs of Theorems 1, 3 and Proposition 2 will be given in Section 4.3. In what follows, we

first explain the design rationale behind Algorithm 1.

4.2 The Rationale behind the Algorithmic Design

The design of Algorithm 1 is inspired by, and mirrors, a primal-dual interior-point method for directly

solving (static) Problem JCCR in terms of long-term average rates. In what follows, we outline the

main steps in our algorithmic design.

Step 1) A perturbed KKT system: We start with reformulating Problem JCCR using the

standard interior-point approach as follows: We first apply a logarithmic barrier function to the link

capacity constraints and non-negativity constraints and then accommodate them in the objective

function. As a result, the augmented objective function (to be minimized) can be written as follows:

f̂ (0)
µ (ȳ) =−

F∑
f=1

Uf (s̄f )−
1

µ

L∑
l=1

log

(
Cl −

F∑
f=1

x̄
(f)
l

)
− 1

µ

F∑
f=1

log(s̄f )−
1

µ

L∑
l=1

F∑
f=1

log(x̄
(f)
l )

− 1

µ

F∑
f=1

∑
n ̸=Dst(f)

log

 ∑
l∈O(n)

x̄
(f)
l −

∑
l∈I(n)

x̄
(f)
l − s̄f1f (n)

 , (9)

where µ > 0 is the same as in Section 4.1. Then, we can reformulate Problem JCCR as the following

unconstrained optimization problem:

R-JCCR: Minimize f̂
(0)
µ (ȳ), (10)

where, as µ→∞, the original objective function of Problem JCCR dominates the barrier functions,

and hence the solution of Problem R-JCCR approaches that of Problem JCCR asymptotically [12,20].

Next, we take the first derivatives of f̂
(0)
µ (ȳ) and set them equal to zero (i.e., by way of the first-order

(KKT) condition) to obtain:

∂f̂
(0)
µ (ȳ)

∂s̄(f)
=− U ′(s̄f )−

1

µs̄f
− 1

µ(
∑

l∈O(Src(f)) x̄
(f)
l −

∑
l∈I(Src(f)) x̄

(f)
l − s̄f )

= 0, (11)

∂f̂
(0)
µ (ȳ)

∂x̄
(f)
l

=
1

µ(Cl −
∑F

f ′=1 x̄
(f ′)
l )

− 1

µx
(f)
l

− 1

µ(
∑

l∈O(Tx(l)) x̄
(f)
l −

∑
l∈I(Tx(l)) x̄

(f)
l − s̄f1f (Tx(l)))

+
1

µ(
∑

l∈O(Rx(l)) x̄
(f)
l −

∑
l∈I(Rx(l)) x̄

(f)
l − s̄f1f (Rx(l)))

= 0 (12)
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In (11) and (12), with respect to the final terms, we define dual variables (also called “barrier

multipliers”, see [12, Section 3.1]) as follows:

p̂(f)n =
1

µ
(∑

l∈O(n) x̄
(f)
l −

∑
l∈I(n) x̄

(f)
l − s̄f1f (n)

) , ∀f, ∀n ̸= Dst(f). (13)

Clearly, if ȳ is strictly primal feasible, we have p̂
(f)
n > 0. We use the vector p̂ , [p̂

(f)
n , ∀f, ∀n ̸= Dst(f)]T

to group all dual variables. Also, we let f̂µ(ȳ) = −
∑F

f=1 Uf (s̄f ) − 1
µ

∑L
l=1 log

(
Cl −

∑F
f=1 x̄

(f)
l

)
−

1
µ

∑F
f=1 log(s̄f ) −

1
µ

∑L
l=1

∑F
f=1 log(x̄

(f)
l ). Substituting (13) in (11) and (12) and then using f̂µ(ȳ),

p̂ and the property of M, we arrive at the following perturbed Karush-Kuhn-Tucker (KKT) sys-

tem that contains stationarity (ST), primal feasibility (PF), dual feasibility (DF), and perturbed

complementary slackness (CS) conditions:

(ST): ∇f̂µ(ȳ) +MT p̂ = 0,

(PF): ȳ > 0, Mȳ < 0,

(DF): p̂ > 0,

(CS): −Diag {Mȳ} p̂ = (1/µ)1.

Compared to the classical KKT conditions [6], the only difference in this perturbed KKT system

is that the right-hand side (RHS) of the CS condition is changed from 0 to 1
µ1. As a result, as

µ→∞, the perturbed KKT point (ȳ, p̂) “almost” satisfies the classical KKT conditions, implying a

near-optimality. Also, we point out that we have specially used the substitution (13) with respect to

the Mȳ < 0 restrictions in order to handle them explicitly via the (PF) and (CS) conditions in the

perturbed KKT system and enable the subsequent queuing design and analysis.

To simplify notation and algebraic derivations, we let fµ(ȳ) , µf̂µ(ȳ). Accordingly, we let p = µp̂

absorb the µ-factor and work with the µ-scaled perturbed KKT system as follows:

(µ-ST): ∇fµ(ȳ) +MTp = 0, (14)

(µ-PF): ȳ > 0, Mȳ < 0, (15)

(µ-DF): p > 0, (16)

(µ-CS): −Diag {Mȳ}p = 1. (17)

Step 2) Second-order Newton’s method: We will now apply Newton’s method to the

perturbed KKT conditions (14)–(17), which is a second-order algorithm. We first work with the

µ-ST and µ-CS conditions, while the µ-PF and µ-DF conditions will be handled later explicitly when

determining the step-size to be taken along the Newton direction. Note that finding a primal-dual pair

(ȳ,p) that satisfies the µ-ST and µ-CS conditions amounts to computing the roots of a nonlinear
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equality system consisting of (14) and (17), which does not have analytic solutions in general and

necessitates numerical methods. By using the Newton’s method and given a feasible primal-dual pair

(ȳk,pk), one can compute the Newton direction [(∆ȳk)T , (∆pk)T ]T as (see [6]):[
Hk MT

−PkM −Qk

][
∆ȳk

∆pk

]
=−

[
gk +MTpk

−(PkQk + I)1

]
, (18)

where we let gk , ∇fµ(ȳk), Hk , ∇2fµ(ȳ
k), Pk , Diag

{
pk
}
, and Qk , Diag

{
Mȳk

}
. Note that,

due to the perturbed KKT conditions, (18) is different from the Newton systems in existing second-

order methods (cf. [8, Eq.(4)], [9, Eq.(8)], [10, Eq.(9)]). Also, directly solving (18) is undesirable

due to its complex structure. A better way for solving (18) is to derive a reduced linear system by

Gaussian elimination to obtain (assuming pk > 0 and hence Pk is non-singular, which can be ensured

by the step-size control described next):

∆ȳk =− (Hk −MTQ−1
k PkM)−1(gk −MTQ−1

k 1), (19)

∆pk =− (MH−1
k MT −P−1

k Qk)
−1

× [MH−1
k (gk +MTpk)− (Qk +P−1

k )1]. (20)

Now, it is not difficult to recognize the structural similarity between (5)–(6) and (19)–(20).

Next, we handle the µ-PF and µ-DF conditions by step-size control: In iteration k, we update the

primal and dual variables as ȳk+1 = ȳk + πk∆ȳk and pk+1 = pk + πk∆pk. In standard primal-dual

interior-point methods [12], the step-size control is based on two rules: The first one is to satisfy

primal-dual feasibility by finding:

max


π ∈ [0, 1]

∣∣∣∣∣∣∣∣∣∣∣

ȳk + π∆ȳk ≥ ϵ1,

M(ȳk + π∆ȳk) ≤ −ϵ1,
N(ȳk + π∆ȳk) ≤ c− ϵ1,

pk + π∆pk ≥ ϵ1,


, (21)

where ϵ > 0 is some arbitrarily small constant. Note that a full Newton step is taken if πk = 1.

The second step-size selection rule is to guarantee a decreasing residual. Specifically, let rµ(ȳ
k,pk) ,

[(gk +MTpk)T , (−PkQk1− 1)T ]T be the residual of µ-ST and µ-CS at ȳk (i.e., the right-hand side

(RHS) of (18)). The second rule is to choose πk to satisfy [12]:

∥rµ(ȳk+1,pk+1)∥ < ∥rµ(ȳk,pk)∥. (22)

Under the step-size rules in (21) and (22), the convergence and second-order convergence speed

analysis follow from standard primal-dual interior-point methods (see [12]).

Step 3) Back to Algorithm 1: Now, we can see that Algorithm 1 indeed mimics the foregoing

approach to adjust y[t] in every time-slot, rather than the average rate ȳk. Moreover, Algorithm 1
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has a much simplified step-size selection rule: We do not require a delicate line search to determine

πk as in (21) and have the residuals (in the form of the RHS of (18)) decrease, both of which are

expensive to check due to a large number of gradient and constraint evaluations in each time-slot.

Rather, we use a fixed step-size π ∈ (0, 1] and a projection to maintain primal-dual feasibility (a basic

requirement in an interior-point method). Surprisingly, even with this much simplified and relaxed

step-size rule, we are still able to show that the time-average of {y[t],p[t]}∞t=0 converges to a bounded

region around the optimal solution as indicated in Theorem 1, which is exactly the goal of Problem

JCCR.

4.3 Proofs of the Main Theorems

In this section, we provide sketched proofs for the theorems in Section 4.1 for better readability. The

detailed proof derivations can be found in the appendices. First, we show a basic property of the

dual sequence {p[t]}∞t=0 that will be useful in proving Theorems 1 and 3.

Lemma 4. For a given µ and under Algorithm 1, if ∥p[0]∥ <∞, then ∥p[t]∥ <∞ for all t.

We prove Lemma 4 by induction. Suppose that ∥p[t]∥ <∞. We let p̃[t+1] be obtained by taking

a full Newton step (i.e., π = 1). Note that once we show ∥p̃[t+1]∥ <∞, the result stated in Lemma 4

immediately follows from the fact that p[t+1] is a convex combination of p[t] and p̃[t+1], and hence its

norm must also be upper bounded. We relegate the proof details to Appendix A.

Sketch of the proof of Theorem 1. The main idea and key steps for proving Theorem 1 are as follows.

First, we consider the one-slot drift of the following particular choice of quadratic Lyapunov function:

V
(
y[t],p[t]

)
, 1

2π

∥∥y[t] − ȳ∗∥∥2 + 1

2µ3π

∥∥p[t] − p∗∥∥2 ,
which can be interpreted as measuring the (unscaled) distance between a primal-dual iterate (y[t],p[t])

and a perturbed KKT point (ȳ∗,p∗) satisfying (14)–(17). For simplicity, we let F[t] andG[t] be defined

as follows: F[t] , H[t] −MTQ−1
[t] P[t]M and G[t] , MH−1

[t] M
T −P−1

[t] Q[t]. Then, after some algebraic

derivations and upper-bounding (see Appendices B.1 and B.2 for derivation details), we obtain the

following relationship:

∆V
(
y[t],p[t]

)
, V

(
y[t+1],p[t+1]

)
− V

(
y[t],p[t]

)
≤ −R∥y[t] − ȳ∗∥2 + πB1 +

1

µ
B2 +

1

µ
B3, (23)

where R , λmin{H}
λmin{F} > 0 and is independent of µ; and B1, B2, and B3 are some positive constants
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that do not scale with µ, and are defined as follows:

B1 ,
1

2λ2
min{F}

sup
t

{[∥∥g[t]−g∗∥∥2+∥∥MT
(
Q−1

[t] −Q−1
∗
)∥∥2]} ,

B2 ,
∥M1∥

µ2λmin{G}
sup
t

{∥∥y[t]− ȳ∗∥∥ ∥∥p[t]−p∗∥∥},
B3 ,

1

2µ2λ2
min{G}

sup
t

{[
∥y[t] − ȳ∗∥∥M1∥

+ ∥M(H−1
[t] g

∗ − ȳ∗)∥∥MH−1
[t] M

Tp[t]∥+ ∥P−1
[t] 1∥

]}
.

It can be seen from (23) that if π = O(1/µ), we have V (y[t+1],p[t+1]) − V (y[t],p[t]) ≤ −R∥y[t] −
ȳ∗∥2 + 1

µB̂, where B̂ , αB1 + B2 + B3 for some α > 0. Telescoping T via one-slot drift expressions

for t = 0, . . . , T − 1 yields:

V
(
y[T ],p[T ]

)
− V

(
y[0],p[0]

)
≤ −R

T−1∑
t=0

∥y[t] − ȳ∗∥2 + T

µ
B̂.

Next, dividing both sides by TR, rearranging terms, and taking T to infinity, we have lim supT→∞
1
T

∑T−1
t=0 ∥y[t]−

ȳ∗∥2 ≤ B2

µ , where we let B2 , B̂/R. Then, the proof is complete because when T is large, we have

∣∣∣ 1
T

T−1∑
t=0

(
y[t] − ȳ∗

)∣∣∣ (a)≤ ( 1
T

T−1∑
t=0

∥y[t] − ȳ∗∥2
) 1

2 ≤ B
√
µ
,

where (a) follows from the triangular inequality and the basic relationship between l1- and l2-norms.

We note that the most challenging step in the proof lies in the one-slot drift analysis, where we

repeatedly exploit the key relationships in the perturbed KKT system in (14)–(17). We relegate the

derivation details to Appendix B.

Proof of Proposition 2. The results in Proposition 2 follow immediately from (23) and noting the fact

that λmin{H}
λmin{F} → 1 as µ gets large.

Proof of Theorem 3. The basic idea to prove Theorem 3 is based on analyzing the one-slot drift

of the following quadratic Lyapunov function: V̂
(
q[t]

)
, 1

2

∥∥q[t]

∥∥2. For convenience, we let ŷ[t] ,[
s1,[t] · · · sF,[t], x̂

(1)
1,[t] · · · x̂

(F )
1,[t], · · · , x̂

(1)
L,[t] · · · x̂

(F )
L,[t]

]T
group all source and actual routing rates. Note that

ŷ[t] ≤ y[t] since x̂
(f)
l,[t] ≤ x

(f)
l,[t]. Then, the queuing dynamic can be written as q[t+1] = q[t] +Mŷ[t] and

the one-slot drift ∆V̂ can be bounded as:

∆V̂ =
1

2
∥q[t+1]∥2−

1

2
∥q[t]∥2=qT

[t]Mŷ[t]+
1

2
ŷT
[t](M

TM)ŷ[t]

≤ qT
[t]Mŷ[t] +

1

2
yT
[t](M

TM)y[t]

(a)

≤ qT
[t]My[t]+NLmax

∀l
{Cl}+

1

2
yT
[t](M

TM)y[t], (24)
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where (a) is due to [3, Lemma 1]. Now, we let B4 , NLmax∀l{Cl} + 1
2λmax{MTM} supt{∥y[t]∥2}.

Note thatNLmax∀l{Cl} and λmax{MTM} are determined by the network topology and supt{∥y[t]∥2} ≤
(max{M,max∀l Cl})2. As a result, B4 depends only on the network and is independent of µ. On the

other hand, according to our step-size control in (8) and that ϵ = O( 1µ), we have My[t] ≤ −β
µ1 for

some β > 0. Therefore, we have

∆V̂ ≤ qT
[t]My[t] +B4 ≤ −

β

µ
qT
[t]1+B4

= −β

µ

F∑
f=1

∑
n ̸=Dst(f)

q(f)n [t] +B4. (25)

So it follows that when
∑F

f=1

∑
n ̸=Dst(f) q

(f)
n [t] ≥ µ

β (B4 + ϵ1), where ϵ1 > 0 is some constant, we have

∆V̂ (q[t]) ≤ −ϵ1, i.e., the first term in (25) dominates B4 and results in a negative drift when the

total queue length is large.

Next, we claim that the following relationship is true:

lim sup
t→∞

V̂ (q[t]) ≤
µ2

2β2
(B4 + ϵ1)

2 +B4. (26)

This claim can be shown by the following argument: First, suppose that V̂ (q[t]) ≤ µ2

2β2 (B4 + ϵ1)
2.

From (25), we know that qT
[t]My[t] ≤ 0, which further implies that ∆V̂ (q[t]) < B4. As a result, we

have

V̂ (q[t+1]) = V̂ (q[t]) + ∆V̂ (q[t]) ≤
µ2

2β2
(B4 + ϵ1)

2 +B4,

i.e., (26) is true. On the other hand, suppose that V̂ (q[t]) >
µ2

2β2 (B4+ϵ1)
2. From the basic relationship

between l1- and l2-norms, we have (2V̂ (q[t]))
1
2 ≤

∑F
f=1

∑
n ̸=Dst(f) q

(f)
n [t]. This implies that if V̂ (q[t]) >

µ2

2β2 (B4 + ϵ1)
2, we have ∆V̂ (q[t]) ≤ −ϵ1. This means that V̂ (q[t+1]) < V̂ (q[t]) and that the sequence

{V̂ (q[t])} will monotonically decrease at a rate at least ϵ1. Therefore, there exists a time t′ such that

V̂ (q[t′]) ≤ µ2

2β2 (B4 + ϵ1)
2, and then the rest follows from the earlier discussions in the case where

V̂ (q[t]) ≤ µ2

2β2 (B4 + ϵ1)
2. Finally, we let K2 , 2

[ µ2

2β2 (B4 + ϵ1)
2 + B4

]
and note that K2 scales as

O(µ2). Then, the result stated in the theorem follows by multiplying both sides of (26) by two and

taking the square root. This completes the proof.

4.4 Key Insights for the Theoretical Results

It is insightful to compare our results with those of the first-order methods in [1–4]. First and

foremost, as we mentioned earlier, Algorithm 1 reveals an important connection between our second-

order method and an observable network state information: the potential queue-length changes Q[t].

As opposed to first-order methods where queue-length itself is directly used as a price, the Q[t]-terms
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Table 1: Performance scaling-law comparisons.

2nd-order
1st-order 1st-order

(Primal-dual: [3]) (Dual: [1, 2, 4])

Optimality gap O( 1√
µ) O( 1√

V
) O( 1

V )

Queue-length O(µ) O(V ) O(V )

Step-size O( 1µ) O( 1
V 2 ) O( 1

V )

in (6) show that our pricing scheme is based on the change of queue-length, hence providing another

perspective to interpret the name “second-order method.” Also, Proposition 2 indicates that the

negative Lyapunov drift rate tends to be steeper and insensitive to the objective function contour,

thanks to the Hessian scaling factor. This avoids the potential ill-conditioned limitations in first-order

methods and explains the fast convergence performance.

In addition to the aforementioned salient features, there are several key insights regarding the

performance scaling laws in first- and second-order methods. We note that, like most first-order

methods, Theorems 1 and 3 imply a trade-off relationship between optimality gap and queue-length

(hence delay). Particularly, although having a fundamentally different algorithmic meaning, the bar-

rier parameter µ in our second-order method does play a similar role in performance characterizations

compared to the subgradient step-size scaling factor in first-order methods (e.g., “h” in [1, 4], “V ”

in [2], and “K” in [3]). Accordingly, we summarize the performance scaling laws of the first- and

second-order methods in Table 1 (all parameters in first-order methods are standardized to “V ”).

First, we can see that all schemes have a similar queue-length scaling. The optimality gap scaling

in [3] and our work are similar due to the common primal-dual nature. However, the O( 1√
V
)-scaling

in [3] is achieved at a slower convergence performance and under a more restrictive step-size scaling

described next. For the dual-based controller in [2] (optimality gap scaling was not discussed in [1,4]),

the optimality gap scales as O( 1
V ). Although this result appears to be better at first glance, a closer

look reveals that such a direct comparison cannot be made. In [2], the gap is measured by (in our

notation)
∑

f Uf (s
∗
f )−

∑
f Uf (sf ). In contrast, Theorem 1 measures the gap by ∥ 1T

∑T−1
t=0 y[t] − ȳ∗∥.

We point out that our metric is stronger since it measures the distance to the optimal solution in

every coordinate, while the metric in [2] only addresses the objective value gap. Since the objective

function is continuous, a coordinate-wise near-optimality implies a near-optimality in the objective

value, but the reverse is not necessarily true.

For step-size scaling, we can see that, for the first-order primal-dual scheme in [3] to approach

optimality, the step-size should scale as O( 1
V 2 ), which is much smaller than our O( 1µ)-scaling. On the

other hand, although there is no direct primal-dual step-size counterpart in dual-based controllers [1,

2,4], the dual step-size scaling therein can be understood as O( 1
V ), similar to our O( 1µ). However, this

16



O( 1
V )-scaling is obtained under the dual-based architecture, which is more cumbersome to implement

due to the coupled inner primal subproblem. Finally, we remark that our O( 1µ) step-size scaling

is not restrictive in practical implementations since it is just a sufficient condition to establish the

result in Theorem 1. Given that the proof of Theorem 1 is a limiting argument where the bounding

constants B1, B2, and B3 are not tight, the choice of the constant in O( 1µ)-scaling does not have

to be conservative. In practice, the more restrictive requirement is the primal and dual feasibility

assurance, which plays a key role in offering queuing stability.

So far, we have designed a second-order joint congestion control and routing algorithm and estab-

lished its optimality and queuing stability. However, given the more complex computational scheme

in Algorithm 1, one question begs to be answered: Can we design a distributed algorithm based on

the proposed second-order method? Moreover, although it is convenient to express (5) and (6) in

matrix equations, they are cumbersome to use and more explicit scalar-based expressions are desired

for implementations in practice. These issues constitute the main discussions in the next section.

5 Second-Order Distributed Algorithm Design

In this section, our main goal is to decentralize the proposed second-order method in Section 4. Note

that the main computational complexity in (5) and (6) stems from the following two dense matrix

inverse computations that require global network information:

F−1
[t] =

(
H[t] −MTQ−1

[t] P[t]M
)−1

, (27)

G−1
[t] =

(
MH−1

[t] M
T −P−1

[t] Q[t]

)−1
. (28)

Thus, our effort in this section is centered around tackling these two challenges. We first derive

an alternative way for computing the primal and dual Newton directions in Section 5.1. Next, we

develop distributed computational schemes for the primal and dual Newton directions in Sections 5.2

and 5.3, respectively.

5.1 An Alternative Approach for Computing the Newton Directions

Our first step toward designing a second-order distributed joint congestion control algorithm is to

simplify the primal and dual Newton direction computational schemes in (5) and (6) in order to

facilitate a distributed design. The rationale behind this simplification is based on the following

observation: While (5) and (6) “cleanly” express y[t+1] and p[t+1] only in terms of y[t] and p[t] and

enable all the subsequent optimality and queuing stability proofs, they also make the computational

schemes unnecessarily more complex for practical implementations. Toward this end, we establish

the following lemma that will be useful in Sections 5.2 and 5.3:
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Lemma 5. The primal and dual Newton directions in (5) and (6) can be alternatively computed as

follows:

∆y[t] = −H−1
[t]

(
g[t] −MT p̃[t+1]

)
, (29)

∆p[t] = p̃[t+1] − p[t], (30)

where p̃[t+1] is obtained by starting from p[t] and taking a unit step-size (i.e., π[t] = 1), which can be

computed as:

p̃[t+1] = G−1
[
MH−1

[t] (−g[t]) +P−1
[t] 1

]
. (31)

The key idea here is that, through the use of an auxiliary variable p̃[t+1], the expressions in (29)

and (30) can be made much simpler. Clearly, (30) follows from the definition of p̃[t+1]. Since the

expressions in (29) and (31) are not obvious, we provide a proof in Appendix C. With Lemma 5, we

are now in a position to derive a distributed scheme for computing primal and dual Newton directions.

5.2 Distributed Computation of the Primal Newton Direction

The first advantage of using the new scheme in (29) is that instead of having to deal with F, which

is the unstructured and dense matrix, we are now faced with H[t], which has the following nice block

diagonal structure:

H[t] = Diag
{
S[t],X1,[t], . . . ,XL,[t]

}
,

where S[t] is a diagonal matrix defined as

S[t] , Diag

{
−µU ′′

f (sf [t]) +
1

s2f [t]
, f = 1, . . . , F

}
∈ RF×F ; (32)

and where Xl ∈ RF×F is a symmetric matrix with entries defined as follows:

(Xl,[t])f1,f2 =


1

δ2l [t]
+ 1(

x
(f1)
l [t]

)2 if f1 = f2,

1
δ2l [t]

if f1 ̸= f2,

(33)

where δl[t] , Cl −
∑F

f=1 x
(f)
l [t] represents the unused link capacity of link l in time-slot t, which will

occur frequently in the rest of the paper. It then follows from the block diagonal structure of H[t]

that

H−1
[t] = Diag

{
S−1
[t] ,X

−1
1,[t], . . . ,X

−1
L,[t]

}
. (34)

We note that this block diagonal structure of the Hessian is exactly the same as that in [9, Section

V-C] (after replacing the long-term average rates by instantaneous rates in each time-slot t). Due

to the same structure as their counterparts in [9], S−1
[t] and X−1

l,[t] can be computed in closed-form by

using Lemma 4 and Theorem 5 in [9]. Further, by noting the similarity in structure to the primal

Newton direction scheme in [9, Eq. (9)], we immediately have the following result:
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Theorem 6. Let x̂l be defined as in [9, Theorem 6]. Given dual prices p[t], the congestion control

and routing directions ∆sf,[t] and ∆x
(f)
l,[t] can be computed in closed-form using local information at

each source node s and link l, respectively, as follows (omitting time-slot indexes “[t]” and “[t + 1]”

for simplicity):

∆sf,[t] =
sf,[t]

(
µsf,[t]U

′
f (sf,[t]) + 1− sf,[t]p̃

(f)
Src(f),[t]

)
1− µs2f,[t]U

′′
f (sf,[t])

, ∀f, (35)

∆x
(f)
l,[t] =

(
x
(f)
l,[t]

)2 1−
(x

(f)
l,[t])

2

∥x̂l,[t]∥2

 1

x
(f)
l,[t]

− 1

δl,[t]
+ p̃

(f)
Tx(l),[t] − p̃

(f)
Rx(l),[t]

+

F∑
f ′=1,f ′ ̸=f

(x
(f ′)
l,[t] )

2

∥x̂l,[t]∥2

 1

x
(f ′)
l,[t]

− 1

δl,[t]
+ p̃

(f ′)
Tx(l),[t] − p̃

(f ′)
Rx(l),[t]

 , ∀l, f. (36)

,

The proof of Theorem 6 follows the same line as in [9]: (i) applying (34) as well as Lemma 4 and

Theorem 5 of [9] in (29); and (ii) exploiting the second-order properties of a
(f)
l and b(f) to simplify

the result. Hence, we omit the proof of this theorem for brevity.

Remark 2. Theorem 6 has two interesting networking interpretations. First, the dual price differen-

tial (p̃
(f)
Tx(l)− p̃

(f)
Rx(l)) in (36) plays a similar role of the queuing backlog differential in the back-pressure

schemes. The main difference is that ∆x
(f)
l (i.e., to increase or decrease x

(f)
l,[t]) is based on not only

the pressure differential of session f , but that of all sessions in link l. Moreover, unlike the “winner-

take-all” policy in the back-pressure schemes (i.e., the session with the largest backlog differential uses

up the link capacity), our second-order approach is more “democratic” in that every session gets a

share of the link capacity as indicated in (36).

5.3 Distributed Computation of the Dual Newton Direction

Recall that the dual Newton direction ∆p[t] can be computed indirectly by first solving for the

auxiliary variable p̃[t] in (31). However, there remains one key technical challenge in this approach:

The matrix G =
(
MH−1

[t] M
T −P−1

[t] Q[t]

)
contains a weighted Laplacian matrix term MH−1

[t] M
T ,

which is dense and involves global information. As a result, it is generally intractable to derive a

distributed and closed-form analytic expression forG−1 except for some simplistic network structures.

In what follows, we will first analyze the structure ofG and then propose two strategies to compute

the dual Newton direction in a distributed fashion. Recall that M can be written in a partitioned
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matrix form as M̃ =
[
B A1 · · · AL

]
. Hence, we can decompose MH−1

[t] M
T as

MH−1
[t] M

T =
[
B A1 · · · AL

]


S−1

X−1
1

. . .

X−1
L




BT

AT
1
...

AT
L

 = BS−1BT +
L∑
l=1

AlX
−1
l AT

l .

(37)

Now, we consider each term in the decomposition in (37). ForBS−1BT , sinceB and S−1 are diagonal,

we have

BS−1BT = Diag

{
1

−µU ′′
1 (s1) +

1
(s1)2

b(1)(b(1))T , . . . ,
1

−µU ′′
F (sF ) +

1
(sF )2

b(F )b(F )

}
, (38)

which is a block diagonal matrix. Moreover, from the definition of b(f), each bock has the following

structure:
1

−µU ′′
f (sf ) +

1
(sf )2

Diag {0 . . . 1 . . . 0} ,

where the position of the only non-zero entry 1 corresponds to node Src(f). Next, consider the term∑L
l=1AlX

−1
l AT

l , which is more involved. From [9, Theorem 5], we can decompose
∑L

l=1AlX
−1
l AT

l

as follows:

L∑
l=1

AlX
−1
l AT

l =

L∑
l=1



−a(1)l

. . .

−a(F )
l





(x
(1)
l )2

. . .

(x
(F )
l )2



− 1

∥x̂l∥2


(x

(1)
l )2

...

(x
(F )
l )2

[ (x
(1)
l )2 · · · (x

(F )
l )2

]

−a(1)l

. . .

−a(F )
l


T
 . (39)

Due to the block diagonal structure, the first term in (39) can be further written as

L∑
l=1

Diag
{
(x

(1)
l )2a

(1)
l (a

(1)
l )T , . . . , (x

(F )
l )2a

(F )
l (a

(F )
l )T

}
,

which is also a block diagonal matrix. Moreover, we note that the term −P−1
[t] Q[t] is a diagonal

matrix, which can be written as:

−P−1
[t] Q[t] = Diag

 1

p
(f)
n [t]

 ∑
l∈O(n)

x
(f)
l [t]− sf1f (n)−

∑
l∈I(n)

x
(f)
l [t]

 , f = 1, . . . , F

 ,
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where 1f (n) is an indicator function defined as:

1f (n) =

1 if n = Src(f),

0 otherwise.

Thus, we can combine these two terms with BS−1BT . For convenience, we let D , BS−1BT +∑L
l=1Diag

{
(x

(1)
l )2a

(1)
l (a

(1)
l )T , . . . , (x

(F )
l )2a

(F )
l (a

(F )
l )T

}
− P−1

[t] Q[t]. Clearly, D is also block diagonal,

and can be written as D = Diag {D1, . . . ,DF }. Then, by using [9, Lemma 2], we obtain the following

result, where the proof is relegated to Appendix D.

Lemma 7. The matrix D is block diagonal and each block Df on the main diagonal has the following

structure:

• The diagonal entries (Df )ii are given by

(Df )ii =



∑
l∈O(n)∪I(n)(x

(f)
l )2 + 1

−µU ′′
f (sf )+

1
(sf )2

+ 1

p
(f)
n

[∑
l∈O(n) x

(f)
l − sf1f (n)−

∑
l∈I(n) x

(f)
l

]
if row i corresponds to node n and n = Src(f),∑
l∈O(n)∪I(n)(x

(f)
l )2 + 1

p
(f)
n

[∑
l∈O(n) x

(f)
l − sf1f (n)−

∑
l∈I(n) x

(f)
l

]
otherwise.

• The off-diagonal entries of (Df )ij, i ̸= j, are given by

(Df )ij =

−
∑

l∈Γ(n1,n2)
(x

(f)
l )2 if row i and column j correspond to two connected nodes n1 and n2,

0 otherwise,

where Γ(n1, n2) , {l ∈ L : Tx(l) = n1 and Rx(l) = n2, or Tx(l) = n2 and Rx(l) = n1}.

In Lemma 7, we have omitted the time-slot index “[t]” for notational simplicity. For the same

reason, in the rest of the paper, the associated time-slot index “[t]” will be dropped whenever such

an omission does not cause confusion.

Next, we study the second term in (39), denoted as W, which is symmetric and has the following

partitioned structure:

W ,
L∑
l=1

 1

∥x̂l∥2


−a(1)l

. . .

−a(F )
l




(x
(1)
l )4 · · · (x

(1)
l x

(F )
l )2

...
. . .

...

(x
(F )
l x

(1)
l )2 · · · (x

(F )
l )4



−a(1)l

. . .

−a(F )
l


T


=


D̂1 J12 · · · J1F

J21 D̂2 · · · J2F

...
...

. . .
...

JF1 JF2 · · · D̂F

,
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where

D̂f =
L∑
l=1

(x
(f)
l )4

∥x̂l∥2
a
(f)
l (a

(f)
l )T , f = 1, . . . , F,

Jf1f2 =
L∑
l=1

(x
(f1)
l x

(f2)
l )2

∥x̂l∥2
a
(f1)
l (a

(f2)
l )T , f1, f2 = 1, . . . , F, f1 ̸= f2.

Noting the similarity between D̂f and Df , and by using [9, Lemma 2] and following a similar deriva-

tion to that for Lemma 7, we obtain the following result for characterizing D̂f , where we omit the

proof to avoid repetition.

Lemma 8. The matrix D̂f has the following structure:

• The diagonal entries (D̂f )ii are given by

(D̂f )ii =
∑

l∈O(n)∪I(n)

(x
(f)
l )4

∥x̂l∥2
.

• The off-diagonal entries of (D̂f )ij, i ̸= j, are given by

(D̂f )ij =

−
∑

l∈Γ(n1,n2)
(x

(f)
l )4

∥x̂l∥2
if row i and column j correspond to two connected nodes n1, n2,

0 otherwise.

Using [9, Lemma 3], we can also characterize the structure of Gf1f2 as stated in Lemma 9 below,

where the proof follows that of Lemma 7 and is therefore omitted for the sake of brevity.

Lemma 9. The matrix Gf1f2 has the following structure:

(Gf1f2)ij =


∑

l∈O(n)∪I(n)
(x

(f1)
l x

(f2)
l )2

∥x̂l∥2
if row i and column j correspond to the same node n,

−
∑

l∈Γ(n1,n2)
(x

(f1)
l x

(f2)
l )2

∥x̂l∥2
if row i and column j correspond to two connected nodes n1, n2,

0 otherwise.

So far, we have characterized the structures of D̂f and Gf1f2 . Hence, the structure of W is also

known. Finally, recall that MH−1
[t] M

T = D−W. Therefore, combining the previous derivations, we

have the following result for the structural property of MH−1
[t] M

T .

Theorem 10. The matrix MH−1
[t] M

T can be written as the following partitioned matrix:

MH−1
[t] M

T =


D1 − D̂1 −W12 · · · −W1F

−W21 D2 − D̂2 · · · −W2F

...
...

. . .
...

−WF1 −WF2 · · · DF − D̂F

,
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where the structural properties of the matrices Df , D̂f , and Wf1f2 are specified in Lemmas 7, 8,

and 9, respectively.

With Theorem 10, we are now in a position to design a distributed iterative scheme to compute

the dual Newton directions. We propose two approaches: i) matrix-splitting based approach and

ii) Sherman-Morrison-Woodbury (SMW) based matrix inversion. The most appealing feature of

the matrix-splitting based approach is that it only requires one-hop local information exchange.

However, the major limitation of the matrix-splitting approach is that the obtained solution is only an

approximation and would only converge to the true dual Newton direction asymptotically, regardless

of the size of the network. In contrast, the SMW-based approach can yield the exact value of G−1

(and hence ∆p[t]) within a finite number of steps equal to twice the number of links in the network.

However, the efficiency gain is achieved at the expense of more than one hop of information exchange.

5.3.1 Matrix-Splitting Based Approach

In the literature, the idea of matrix splitting is a generic framework for solving linear equation systems

in an iterative fashion [21]. Consider a consistent linear equation system Kz = d, where K ∈ Rn×n is

a nonsingular matrix and z,d ∈ Rn. Now, suppose that K is split into a nonsingular matrix K1 and

another matrix K2 according to K = K1 −K2. Also, let z0 be an arbitrary starting vector. Then, a

sequence of approximate solutions can be generated by using the following iterative scheme:

zk+1 = (K−1
1 K2)z

k +K−1
1 d, k ≥ 0. (40)

Generally, K1 should be an easily invertible matrix (e.g., diagonal, etc). It can be shown that this

iterative method is convergent to the unique solution z = K−1b if and only if the spectral radius of

the matrix K−1
1 K2 is less than one, i.e., ρ(K−1

1 K2) < 1, where ρ(·) represents the spectral radius of

a matrix. The following result provides a sufficient condition for ρ(K−1
1 K2) < 1 (see [8, 21] for more

details):

Lemma 11. Suppose that K is a real symmetric matrix. If both matrices K1+K2 and K1−K2 are

positive definite, then ρ(K−1
1 K2) < 1.

Lemma 11 suggests that the convergence property of a given matrix splitting scheme can be

verified by checking for the positive definiteness of the identified matrix. The following lemma states

a sufficient condition for checking positive definiteness based on diagonal dominance [22, Corollary

7.2.3]:

Lemma 12. If a symmetric matrix Q is strictly diagonally dominant, i.e., |(Q)ii| >
∑

j ̸=i |(Q)ij |,
and if (Q)ii > 0 for all i, then Q is positive definite.
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We are now ready to use the matrix splitting scheme in (40) to compute p[t]. First, we let Λ be

the diagonal matrix having the same main diagonal of G, i.e.,

Λ[t] = Diag {G} = Diag
{
diag

{
MH−1

[t] M
T −P−1

[t] Q[t]

}}
. (41)

We let Ω denote the matrix containing the remaining entries after subtracting Λ[t] from G, i.e.,

Ω[t] = G−Λ[t]. (42)

Further, we define a diagonal matrix Ω[t] where the diagonal entries are defined by

(Ω[t])ii =
∑
j

|(Ω[t])ij |. (43)

Then, we can split G as (Λ[t] + αΩ[t]) − (αΩ[t] −Ω[t]), where α > 1
2 is a parameter that serves the

purpose of tuning convergence performance. Based on this splitting scheme, we have the following

result:

Proposition 13. Consider the matrix splitting scheme G as G = (Λ[t]+αΩ[t])−(αΩ[t]−Ω[t]), where

Λ[t], Ω[t], and Ω[t] are defined in (41), (42), and (43), respectively. Then, the following sequence {pk
[t]}

generated by

pk+1
[t] = (Λ[t] + αΩ[t])

−1(αΩ[t] −Ω[t])p
k
[t] + (Λ[t] + αΩ[t])

−1(−MH−1
[t] g[t]) (44)

converges to the solution of (31) as k →∞.

By Lemmas 11 and 12, the key to proving Proposition 13 is to verify that both the sum and

difference of the two components in the splitting scheme are strictly diagonally dominant. We relegate

the proof details to Appendix E.

Remark 3. The matrix splitting scheme in Proposition 13 generalizes the matrix splitting scheme

in [8]. In both matrix splitting schemes, the goal is to construct a diagonal nonsingular matrix

(Λ[t] + αΩ[t] in our paper) for which the inverse can be separated and easily computed by each node

(as in our case) or each link (as in [8]). However, our matrix splitting scheme differs from that in [8]

in the following aspects. First, since (Λ[t] + αΩ[t]) is not element-wise non-negative (c.f. [8]), the

definition of the matrix Ω[t] in this work is different from that in [8], which also leads to a different

proof. Second, we parameterize the splitting scheme (using α) to allow for tuning the convergence

speed in (44), where the scheme in [8] is a special case of our scheme when α = 1.

Several remarks on the parameter α are in order. It can be seen from (40) that the solution error

shrinks in magnitude approximately by a factor of ρ(K−1
1 K2). Thus, the smaller ρ(K−1

1 K2), the

faster the convergence rate of the iterative scheme. The following result [9,10] for the selection of the

parameter α states the above observation:
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Proposition 14. Consider two alternative matrix splitting schemes with parameters α1 and α2,

respectively, satisfying 1
2 < α1 ≤ α2. Let ρα1 and ρα2 be their spectral radii, respectively. Then,

ρα1 ≤ ρα2.

Proposition 14 indicates that we should choose a smaller α in order to make the matrix splitting

scheme converge faster, i.e., we can let α = 1
2 + ϵ, where ϵ > 0 is small. The proof of Proposition 14

makes use of the comparison theorem in [21].

The next theorem shows that the matrix splitting scheme in Theorem 13 can be implemented in

a distributed fashion. We first define two types of link sets as follows:

Φ(n) , I (n) ∪ O (n) , Ψ(n, f) , {l ∈ I (n) ∪ O (n) : Tx(l) = Dst(f) or Rx(l) = Dst(f)} .

We let 1S(a) denote the set indicator function, which takes value 1 if a ∈ S and 0 otherwise. Then,

we have the following result:

Theorem 15. Given a primal solution y, the update of the dual variable p
(f)
n can be iteratively

computed using local information at each node. More specifically, p
(f)
n can be computed as:

p(f)n [k + 1] =
1

Uf
n,[t][k]

(V
(f)
n,1 [k] + V

(f)
n,2 [k]−W f

n [k]), (45)

where U
(f)
n [k], V

(f)
n [k], and W

(f)
n [k] are, respectively, defined as

U (f)
n [k] ,



∑
l∈Φ(n)[1 + α(1− 1Ψ(n,f)(l))](x

(f)
l )2

(
1− (x

(f)
l )2

∥x̂l∥2

)
+

1

p
(f)
n [t]

[∑
l∈O(n) x

(f)
l − sf1f (n)−

∑
l∈I(n) x

(f)
l

]
+∑F

f ′=1,̸=f

(∑
l∈Ψ(n,f ′)(1 + 1Ψ(n,f ′)(l))

α(x
(f)
l x

(f ′)
l )2

∥x̂l∥2

)
if n ̸= Src(f),∑

l∈Φ(n)[1 + α(1− 1Ψ(n,f)(l))](x
(f)
l )2

(
1− (x

(f)
l )2

∥x̂l∥2

)
+

1

p
(f)
n [t]

[∑
l∈O(n) x

(f)
l − sf1f (n)−

∑
l∈I(n) x

(f)
l

]
+∑F

f ′=1,̸=f

(∑
l∈Ψ(n,f ′)(1 + 1Ψ(n,f ′)(l))

α(x
(f)
l x

(f ′)
l )2

∥x̂l∥2

)
+ 1

−µU ′′
f (sf )+

1
(sf )2

if n = Src(f),

(46)

V
(f)
n,1 [k] ,

∑
l∈I(n)\Ψ(n,f)

(x
(f)
l )2

(
1−

((x
(f)
l )2)

∥x̂l∥2
)
(p

(f)
Tx(l) + αp

(f)
Rx(l))+

∑
l∈O(n)\Ψ(n,f)

(x
(f)
l )2

(
1−

((x
(f)
l )2)

∥x̂l∥2
)
(p

(f)
Rx(l) + αp

(f)
Tx(l))−

F∑
f ′=1, ̸=f

( ∑
l∈Φ(n)

(1 + 1Ψ(n,f ′)(l))
α(x

(f)
l x

(f ′)
l )2

∥x̂l∥2
)
pfn, (47)
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V
(f)
n,2 [k] ,

F∑
f ′=1,̸=f

(( ∑
l∈I(n)

(x
(f)
l x

(f ′)
l )2

∥x̂l∥2
−
∑

l∈O(n)

(x
(f)
l x

(f ′)
l )2

∥x̂l∥2
)
(p

(f ′)
Rx(l) − p

(f ′)
Tx(l))

)
, (48)

W (f)
n [k] ,



(
1− x

(f)
l
δl

)[∑
l∈O(n)

(
1−

∑F
f ′=1

(x
(f)
l )2

∥x̂l∥2
x
(f ′)
l

)
−∑

l∈I(n)

(
1−

∑F
f ′=1

(x
(f)
l )2

∥x̂l∥2
x
(f ′)
l

)]
+ 1

p
(f)
n

if n ̸= Src(f),∑
l∈O(n)

(
1−

∑F
f ′=1

(x
(f)
l )2

∥x̂l∥2
x
(f ′)
l

)
−∑

l∈I(n)

(
1−

∑F
f ′=1

(x
(f)
l )2

∥x̂l∥2
x
(f ′)
l

)]
+ 1

p
(f)
n

+
sf (1+µsfU

′
f (sf ))

µs2fU
′′
f (sf )−1

if n = Src(f).

(49)

Theorem 15 can be proved by computing the element-wise expansion of (44). We relegate the

proof details to Appendix F.

Remark 4. Several interesting remarks pertaining to Theorem 15 are in order. First, from (46),

(47), (48), and (49), we can observe that all the information needed to update w
(f)
n are either locally

available at node n or at links that incident at node n. This not only shows that the matrix splitting

scheme can be implemented in a distributed fashion, but it also means that the information exchange

scale is at most one-hop. Second, although the dual update scheme within a second-order method

is more complex at each node, the more rapid convergence rate of a second-order method, with its

accompanying less information exchange, outweigh this local computational cost increase.

5.3.2 A More Efficient Approach Based on Sherman-Morrison-Woodbury Matrix In-

version Lemma

Although the matrix-splitting scheme only requires one-hop local information exchange, the main

drawback is that the obtained solution is an approximation and only converges asymptotically to

p̃[t+1], and thereby to the true dual Newton direction p[t+1]. Here, we propose a more efficient scheme

to compute p̃[t+1], but at the expense of a greater information exchange scale. Our basic idea to

compute p̃[t+1] is that, instead of splitting G and computing its inverse implicitly, we directly update

G−1 by using the Sherman-Morrison-Woodbury (SMW) matrix inversion lemma. For notational

simplicity, in what follows, we omit the time-slot index “[t]”.

More specifically, consider

G−1 =
(
MH−1

[t] M
T −P−1

[t] Q[t]

)−1
=

[(
BS−1

[t] B−P−1
[t] Q[t]

)
+

L∑
l=1

AlX
−1
l AT

l

]−1

. (50)
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From Lemma 7, we have that BS−1
[t] B−P−1

[t] Q[t] is a diagonal matrix, which can be written as follows:

BS−1
[t] B−P−1

[t] Q[t] =

Diag

 1

p
(f)
n

 ∑
l∈O(n)

x
(f)
l −

∑
l∈I(n)

x
(f)
l − sf1f (n)

+

(
−µU ′′

f (sf ) +
1

s2f

)
1f (n), f = 1, . . . , F

 .

(51)

Due to this diagonal structure, (BS−1
[t] B − P−1

[t] Q[t])
−1 can be readily computed at each node in a

distributed fashion. We let D = Diag
{
D1, . . . ,DF

}
denote this diagonal matrix.

On the other hand, from (39), we can see that
∑L

l=1AlX
−1
l AT

l can be written as:

L∑
l=1

AlX
−1
l AT

l =

L∑
l=1




(x
(1)
l )2a

(1)
l (a

(1)
l )T

. . .

(x
(F )
l )2a

(F )
l (a

(F )
l )T

 (52)

− 1

∥x̂l∥2


(x

(1)
l )2a

(1)
l

...

(x
(F )
l )2a

(F )
l

[ (x
(1)
l )2(a

(1)
l )T · · · (x

(F )
l )2(a

(F )
l )T

]
.

 (53)

Now, note that the term in (52) is block-diagonal and can be merged with BS−1
[t] B−P−1

[t] Q[t], and

the resultant matrix is exactly the D matrix in Lemma 7, which is also block-diagonal. Moreover,

each diagonal block has the following form:

Df +

L∑
l=1

(x
(f)
l )2a

(f)
l (a

(f)
l )T ,

which can be thought of as applying L rank-1 updates on Df . Hence, we can start from (BS−1
[t] B−

P−1
[t] Q[t])

−1 and apply the SMW matrix inversion lemma L times to compute D−1
f . More specifically,

let D−1
f,[l−1] denote the intermediate result we have before applying the l-th SMW-correction. Also,

let D−1
f,[0] = D

−1
f . Then, we have the following computational scheme:

D−1
f,[l] = D−1

f,[l−1] −
D−1

f,[l−1](x
(f)
l )2a

(f)
l (a

(f)
l )TD−1

f,[l−1]

1 + (x
(f)
l )2(a

(f)
l )TD−1

f,[l−1]a
(f)
l

, l = 1, . . . , L. (54)

After L times of SMW-corrections, we would have achieved D−1 = Diag
{
D−1

1 , . . . ,D−1
F

}
.

Further, we note that

G =




D1

. . .

DF

− 1

∥x̂l∥2


(x

(1)
l )2a

(1)
l

...

(x
(F )
l )2a

(F )
l

[ (x
(1)
l )2(a

(1)
l )T · · · (x

(F )
l )2(a

(F )
l )T

]
.

 , (55)
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Algorithm 2 SMW-based approach for computing G−1

Initialization:

1. For each node, compute the corresponding components in D = Diag {D1, . . . ,DF } using (51),

and send the result to the starting link.

Main Iteration:

2. For all f = 1, . . . , F , let D−1
f,[0] = D

−1
f . For links l = 1, . . . , L, update Df,[l] using (54). Let

D−1 = Diag
{
D−1

1,[L], . . . ,D
−1
F,[L]

}
.

3. Let K−1
[0] = D−1. For links l = 1, . . . , L, update K−1

[l] using (56). Let G−1 = K−1
[L] and stop.

which again can be thought of as applying rank-1 updates L times on D. Since D−1 has been

computed, we can again apply the SWMmatrix inversion lemma L times to compute G−1. Compared

to the computation of D−1, however, applying SMW-corrections L times to compute G−1 is slightly

more complex. The reason is that each rank-1 update in (55) is a dense matrix. Therefore, each

SMW-correction cannot be done in a block-wise fashion and needs to be performed over the entire

matrix. Fortunately, each SWM-correction still only involves information locally available at link l,

and hence can be done locally. Toward this end, let K−1
[l−1] denote the intermediate result we have

before applying the l-th SMW-correction. Also, let K−1
[0] = D−1. For notational convenience, let

ul =
1

∥x̂l∥2


(x

(1)
l )2a

(1)
l

...

(x
(F )
l )2a

(F )
l

.
Then, we have the following computational scheme:

K−1
[l] = K−1

[l−1] +
K−1

[l−1]ul(ul)
TK−1

[l−1]

∥x̂l∥2 − (ul)TK
−1
[l−1]ul

, l = 1, . . . , L. (56)

Finally, after L SMW-corrections, we achieve G−1, which can in turn be used to compute p̃[t+1] and

∆p[t]. To conclude the discussion, we summarize the SMW-based approach in Algorithm 2.

There is one important remark pertaining to implementing the SMW-based approach in Algo-

rithm 2 in a distributed fashion. Noting that each SMW-correction only involves information locally

available at each link, the scheme can proceed following any pre-determined link ordering. Here,

unlike the matrix-splitting based approach that only converges asymptotically, we require exactly 2L

SWM-corrections to compute precise value of G−1. Thus, the SMW-based approach is much more

efficient. However, since the SMW-based approach involves all L links in the network, the scale of

information exchange is clearly larger than the 1-hop scale required by the matrix-splitting approach,

and is determined by the network diameter. Fortunately, many communication networks in practice

28



3

l1

l2
l3

l4

l5

l6

l7

s1: N1 → N3

s2: N4 → N2

1 2

5 4

Figure 4: A five-node two-session network.

(e.g., the Internet, data centers, etc.) are constructed in such a way that the network diameter is

usually small.

6 Numerical Results

In this section, we use a 5-node 2-session network example as shown in Figure 4 to illustrate the

performance of our proposed second-order joint congestion control and routing algorithm. There are

two sessions in the network: N1 to N3 and N4 to N2. Each link in the network has unit capacity. We

use log(sf ) as the utility function, which represents the proportional fairness [23]. In the simulation,

we set µ = 1000, meaning that a point (y,p) that satisfies the perturbed KKT system implies

−Diag {My}p/µ = 1
µ = 0.001, i.e., the accuracy of the CS condition is on the order of 10−3. The

(feasible) primal and dual initial points are summarized in Table 2.

Table 2: The primal and dual initial points.

s1 x
(1)
1 x

(1)
2 x

(1)
3 x

(1)
4 x

(1)
5 x

(1)
6 x

(1)
7

0.45 0.3 0.35 0.7 0.1 0.35 0.12 0.15

s2 x
(1)
1 x

(1)
2 x

(1)
3 x

(1)
4 x

(1)
5 x

(1)
6 x

(1)
7

0.25 0.23 0.22 0.1 0.15 0.26 0.38 0.4

p
(1)
1 p

(1)
2 p

(1)
4 p

(1)
5 p

(2)
1 p

(2)
3 p

(2)
4 p

(2)
5

22.61 18.62 20.43 21.72 6.17 1.64 7.52 7.06

The convergence behavior is illustrated in Figure 5. It can be seen from Figure 5 that the source

rates (not just the average source rates) rapidly converge to the following pair (s1 = 0.9634, s2 =

1.0247) in approximately 15 iterations. This shows the efficiency of our proposed second-order al-
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Figure 5: Convergence behavior of the proposed

second-order algorithm for the network in Fig-

ure 4.
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Figure 6: Convergence behavior of the first-order

schemes for the network in Figure 4.
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Figure 7: Convergence behavior of the proposed

second-order algorithm for the network in Fig-

ure 4.
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Figure 8: Convergence behavior of the first-order

schemes for the network in Figure 4.

gorithm. To compare the convergence performance with the first-order back-pressure algorithm, we

also used the same network example in Figure 4 to experiment with both primal-dual [3] and dual

based first-order schemes [1, 2]. For a fair comparison, both first-order back-pressure based schemes

were started from the same primal and dual initial points. Targeting approximately the same level

of accuracy, we set the step-size scaling factor, denoted as V , as V = 1000 (see the discussions in

Section 4.4). The convergence performances of both primal-dual and dual based first-order schemes
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are illustrated in Figure 6. We can see from Figure 6 that in order to achieve high accuracy solu-

tions, the first-order schemes converge very slowly: in both primal-dual and dual based schemes, s2

shows no signs of convergence even after 14000 iterations. This shows that our second-order scheme

converges at least two orders of magnitude faster than the first-order schemes. We can also observe

that the iterates of the primal-dual based scheme in the first-order domain evolve less abruptly com-

pared to the dual-based scheme, but also converge more slowly. To see the impacts of µ and V on

the second-order and first-order methods, we let µ = V = 50 and run another experiment on the

network in Figure 4. As shown in Figures 7, we can see that when µ is smaller, our second-order

scheme converges even faster (less than 10 iterations) but at the cost of a larger optimality gap. On

the other hand, as shown in Figure 8, with V = 50, the convergence of the first-order methods can

be made faster but also exhibits much larger fluctuations. Again, we can observe that the iterates

in the primal-dual based scheme evolves less abruptly with less fluctuations, but converges slower.

However, regardless of which first-order scheme and what choice of V , the obtained solutions under

both first-order schemes are far from being optimal since the obtained objective value is much smaller

than that of the second-order scheme.

Next, we verify whether the obtained solution under our second-order scheme is indeed optimal

(or the accuracy of the obtained solution). First, we illustrate the routing solutions for Sessions 1 and

2 in Figure 9 and Figure 10, respectively. The obtained dual solutions are summarized in Table 3. It

can be readily verified that the obtained solutions are strictly primal and dual feasible. Further, we

list the components of g+MTp and −Diag {My}p (i.e., the µ-ST and µ-CS conditions) in Table 4.

We can see that (up to MATLAB’s numerical accuracy) both µ-ST and µ-CS conditions are satisfied,

which confirms the optimality of the obtained solution.

Table 3: The optimal dual initial solution.

p
(1,∗)
1 p

(1,∗)
2 p

(1,∗)
4 p

(1,∗)
5 p

(2,∗)
1 p

(2,∗)
3 p

(2,∗)
4 p

(2,∗)
5

1039.1 63.23 1037.9 1038.5 974.05 641.72 9976.87 975.48

Table 4: The µ-ST and µ-CS evaluation of the obtained solution.

g +MTp

0 0 -4.9E-11 -4.9E-11 1E-13 3E-14 -2E-14 0

0 0 -5.6E-11 -5.6E-11 6E-13 0 -1.6E-13 -3E-14

−Diag {My}p
1 1 1 1 1 1 1 1

Lastly, the simulation results of average total queue-length vs. mean arrive rates is illustrated
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Figure 9: The routing solutions for session N1 →
N3.
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Figure 10: The routing solutions for session N4

→ N2.
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Figure 11: Average total queue-length vs. mean arrival rate (µ = V = 1000).

in Fig. 11, where we can see that the delay performance of our second-order scheme significantly

outperforms that of the first-order methods (more than three orders of magnitude lower). This large

delay performance gap is a direct consequence of the slow convergence of the first-order methods.

7 Conclusion

In this paper, we have developed a new second-order algorithmic framework for joint congestion

control and routing optimization. Unlike most joint congestion control and routing methods in

the literature, our proposed algorithmic framework fundamentally deviates from the classical back-

pressure idea to offer not only rate optimality and queuing stability, but also fast convergence and high

accuracy. Our main contributions in this paper are three-fold: i) We have proposed a second-order

joint congestion control and routing framework based on a primal-dual interior-point approach that is
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well-suited for implementation in practical network systems; ii) we have rigorously established the rate

optimality and queuing stability of the proposed second-order joint congestion control and routing

framework; and iii) we have proposed several novel approaches for the distributed implementation of

our second-order joint congestion control and routing optimization algorithm. These results serve as

an exciting first step toward an analytical foundation for a second-order joint congestion control and

optimization theory that offers fast convergence performance. Collectively, these results serve as a first

building block of a new second-order theoretical framework for cross-layer optimization for network

systems. Second-order cross-layer optimization for network system sis an important and yet under-

explored area. Future research topics may include extending and generalizing our proposed second-

order algorithmic framework to applications in other network systems, such as wireless networks with

stochastic channel models, cloud computing resource allocations, and energy production scheduling

in the smart electric power grid.

A Proof of Lemma 4

We prove Lemma 4 result by induction. For t = 0, the result is trivially true by assumption. Suppose

that at time slot we have t ∥p[t]∥ < B < ∞, we will show that ∥p[t+1]∥ is also bounded. We let

p̃[t+1] , p[t] +∆p[t], i.e., we let π[t] = 1. After some algebraic derivations, we have:

p̃[t+1] =
(
MH−1

[t] M
T −P−1

[t] Q[t]

)−1 [
MH−1

[t] (−g[t]) +P−1
[t] 1

]
.

Now, we claim that ∥p̃[t+1]∥ is bounded. This is true because

∥p̃[t+1]∥ ≤
∥∥∥∥(MH−1

[t] M
T −P−1

[t] Q[t]

)−1 [
MH−1

[t] (−g[t]) +P−1
[t] 1

]∥∥∥∥
(a)

≤
∥∥∥(MH−1

[t] M
T )−1

[
MH−1

[t] (−g[t]) +P−1
[t] 1

]∥∥∥
(b)

≤ λ−1
min

{
MH−1

[t] M
T
}(∥∥∥MH−1

[t] (−g[t])
∥∥∥+ ∥∥∥P−1

[t] 1
∥∥∥)

(c)

≤ λ−1
min

{
MH−1

[t] M
T
}(

λ−1
min {H[t]}

∥∥M(−g[t])
∥∥+ ∥∥∥P−1

[t] 1
∥∥∥) , (57)

where (a) holds because of the strict feasibility of y[t] and p[t] (and hence −P−1
[t] Q[t] is a positive

definite diagonal matrix, which can only increase the eigenvalues of MH−1
[t] M

T ); (b) follows from tri-

angular inequality and taking the smallest eigenvalue of MH−1
[t] M

T and factoring it outside the norm;

and (c) follows from factoring λ−1
min {H[t]} outside the norm. By assumption, since g[t] is Lipschitz

continuous, implying the spectral radius ρ(H[t]) is bounded. Also, since M is constructed by the

node-arc incidence matrix of a connected graph, ρ(H[t]) is also finite. As a result, λ−1
min

{
MH−1

[t] M
T
}

must be finite. Also, since sf [t] and x
(f)
l [t] are strictly bounded away from zero (due to the step-size
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selection rule), we have that ∥g[t]∥ is bounded. Likewise, since p[t] is also strictly bounded away from

0, we have that
∥∥∥P−1

[t] 1
∥∥∥ is bounded from above. Therefore, we can conclude that the RHS of (c) in

(57) is bounded, i.e., ∥p̃[t+1]∥ is bounded.
Finally, note that

∥p[t+1]∥ =
∥∥(1− π[t])p[t] + π[t]p̂[t+1]

∥∥
(a)

≤ (1− π[t])∥p[t]∥+ π[t]∥p̂[t+1]∥,

where (a) follows from triangular inequality. Hence, we can conclude that ∥p[t+1]∥ is also bounded.

This completes the proof.

B Proof of Theorem 1

The main idea and the key steps for proving Theorem 1 are based on Lyapunov drift analysis. First,

we analyze the one-slot drift of the following quadratic Lyapunov function:

V
(
y[t],p[t]

)
, 1

2π

∥∥y[t] − ȳ∗∥∥2 + 1

2µ3π

∥∥p[t] − p∗∥∥2 ,
which can be interpreted as measuring the (unscaled) distance between a primal-dual iterate (y[t],p[t])

and a perturbed KKT point (ȳ∗,p∗) satisfying (14)–(17). The one-slot drift analysis reveals the

following key relationship:

∆V
(
y[t],p[t]

)
=V

(
y[t+1],p[t+1]

)
− V

(
y[t],p[t]

)
≤−R∥y[t] − ȳ∗∥+ 1

µ
B,

where R and B are both some positive finite quantities independent of µ. Based on this relationship,

the result stated in Theorem 1 follows from telescoping T one-slot drifts and then letting T go to

infinity.

We begin with evaluating the one-slot Lyapunov drift ∆V
(
y[t],p[t]

)
:

∆V
(
y[t],p[t]

)
=

1

2π

∥∥y[t+1] − ȳ∗∥∥2 + 1

2µ3π

∥∥p[t+1] − p∗∥∥2
− 1

2π

∥∥y[t] − ȳ∗∥∥2 − 1

2µ3π

∥∥p[t] − p∗∥∥2
=

1

2π

(
y[t+1] + y[t] − 2ȳ∗)T (y[t+1] − y[t]

)
(58)

+
1

2µ3π

(
p[t+1] + p[t] − 2p∗)T (p[t+1] − p[t]

)
. (59)

In what follows, we will bound the two expressions in (58) and (59) in Section B.1 and B.2, respec-

tively.
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B.1 One-slot Lyapunov drift of (58)

Note that (58) can be further expanded as:

(58) =

[
1

π

(
y[t] − ȳ∗)− 1

2

(
H[t] −MTQ−1

[t] P[t]M
)−1 (

g[t] −MTQ−1
[t] 1

)]T
×[

−π
(
H[t] −MTQ−1

[t] P[t]M
)−1 (

g[t] −MTQ−1
[t] 1

)]
=−

(
y[t] − ȳ∗)T (H[t] −MTQ−1

[t] P[t]M
)−1 (

g[t] −MTQ−1
[t] 1

)
(60)

+
1

2
π
(
g[t] −MTQ−1

[t] 1
)T (

H[t] −MTQ−1
[t] P[t]M

)−2 (
g[t] −MTQ−1

[t] 1
)
. (61)

We first examine (60), which can be computed as follows:

(60) =−
(
y[t] − ȳ∗)T (H[t] −MTQ−1

[t] P[t]M
)−1 (

g[t] −MTQ−1
[t] 1

)
(a)
= −

(
y[t] − ȳ∗)T (H[t] −MTQ−1

[t] P[t]M
)−1 (

g[t] − g∗ −MTp∗ −MTQ−1
[t] 1

)
(b)
= −

(
y[t] − ȳ∗)T (H[t] −MTQ−1

[t] P[t]M
)−1 (

g[t] − g∗ +MTQ−1
∗ 1−MTQ−1

[t] 1
)

=−
(
y[t] − ȳ∗)T (H[t] −MTQ−1

[t] P[t]M
)−1

(g[t] − g∗) (62)

−
(
y[t] − ȳ∗)T (H[t] −MTQ−1

[t] P[t]M
)−1

MT
(
Q−1

∗ −Q−1
[t]

)
1, (63)

where (a) follows from the fact that g∗ +MTp∗ = 0 (i.e., the µ-ST condition) and (b) follows from

the fact that p∗ = −Q−1
∗ 1 (i.e., the µ-CS condition).

For notational convenience, we let F =
(
H[t] −MTQ−1

[t] P[t]M
)
and note that the following rela-

tionship follows from (62) and the convexity of fµ(·):

(62) =−
(
y[t] − ȳ∗)T F−1

(
g[t] − g∗)

≤− 1

λmin{F}
(
y[t] − ȳ∗)T (g[t] − g∗) . (64)

By the Mean-Value Theorem, we have the following pair of relationships:

fµ
(
y[t]

)
= fµ(ȳ

∗) + (g∗)T
(
y[t] − ȳ∗)+ 1

2

(
y[t] − ȳ∗)T H[ỹ1]

(
y[t] − ȳ∗) , (65)

fµ(ȳ
∗) = fµ

(
y[t]

)
+
(
g[t]
)T (

ȳ∗ − y[t]

)
+

1

2

(
ȳ∗ − y[t]

)T
H[ỹ2]

(
ȳ∗ − y[t]

)
. (66)

In (65) and (66), H[ỹ1] and H[ỹ2] represent the matrices evaluated at points ỹ1 and ỹ2, where

ỹ1 = (1 − α1)y[t] + α1ȳ
∗ and ỹ2 = (1 − α2)y[t] + α2ȳ

∗, for some 0 ≤ α1, α2 ≤ 1. Next, adding (65)

and (66) yields:(
g[t] − g∗)T (ȳ∗ − y[t]

)
+

1

2

(
y[t] − ȳ∗)T (H[ỹ1] +H[ỹ2])

(
y[t] − ȳ∗) = 0,
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which implies that(
g[t] − g∗)T (y[t] − ȳ∗) = 1

2

(
y[t] − ȳ∗)T (H[ỹ1] +H[ỹ2])

(
y[t] − ȳ∗)

≥ λmin(H)
∥∥y[t] − ȳ∗∥∥2 . (67)

Combining (64) and (67), we can conclude that

(62) ≤ −R
∥∥y[t] − ȳ∗∥∥2 , (68)

where we let R , λmin{H}
λmin{F} . Noting that the µ-factors in λmin{H} and λmin{F} cancel each other, we

have that R is independent of µ.

Now, we evaluate the term in (63), which is non-positive because:

(63) =−
(
y[t] − ȳ∗)T F−1MT

(
Q−1

∗ −Q−1
[t]

)
1

≤ 1

λmin(F)Γ

(
y[t] − ȳ∗)T MTDiag

{
M
(
y[t] − ȳ∗)}1

=
1

λmin(F)Γ

∥∥Diag
{
M
(
y[t] − ȳ∗)}1∥∥2 ≤ 0, (69)

where Γ is defined as

Γ = inf
t


 ∑

l∈I(n)

x
(f)
l,[t] + sf,[t]1f (n)−

∑
l∈O(n)

x
(f)
l,[t]

 ∑
l∈I(n)

x̄
(f),∗
l + s̄∗f1f (n)−

∑
l∈O(n)

x̄
(f,∗)
l

 .

By combining (68) and (69), we have that

(60) ≤ −R
∥∥y[t] − ȳ∗∥∥2 . (70)

Next, we analyze the quadratic term (61), for which we have:

(61) ≤ 1

2
π
(
g[t] −MTQ−1

[t] 1
)T

F−2
(
g[t] −MTQ−1

[t] 1
)

≤ π

2λ2
min{F}

∥∥∥g[t] −MTQ−1
[t] 1

∥∥∥2
(a)
=

π

2λ2
min{F}

∥∥∥g[t] − g∗ −MTp∗ −MTQ−1
[t] 1

∥∥∥2
(b)
=

π

2λ2
min{F}

∥∥∥g[t] − g∗ −MT
(
Q−1

[t] −Q−1
∗

)
1
∥∥∥2

(c)

≤ π

2λ2
min{F}

[∥∥g[t] − g∗∥∥2 + ∥∥∥MT
(
Q−1

[t] −Q−1
∗

)∥∥∥2] , (71)

where inequality (a) utilizes the µ-ST condition g∗ + MTp∗ = 0 (cf. (14)); equality (b) utilizes

the µ-CS condition p∗ = −Q−1
∗ 1 (cf. (17)); and inequality (c) follows from the same argument
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in (69). Note that the µ-factors in (71) cancel each other. Also, due to the boundedness of the

primal variables y[t] under the algorithmic design and the assumption that the utility function Uf (·)
is Lipschtiz continuous, we can conclude that (71) is upper-bounded by some constant. By letting

B1 , supt

{
1

2λ2
min{F}

[∥∥g[t] − g∗∥∥2 + ∥∥∥MT
(
Q−1

[t] −Q−1
∗

)∥∥∥2]}, we have

(61) ≤ πB1. (72)

So far, we have analyzed the term (58) in the one-slot Lyapunov drift.

B.2 One-slot Lyapunov drift of (59)

Next, we move on to analyzing the other term (59) in the one-slot drift, which can be further expanded

as follows:

(59) =

[
1

µ3π

(
p[t] − p∗)− 1

2µ3

(
MH−1

[t] M
T −P−1

[t] Q[t]

)−1 (
MH−1

[t]

(
g[t] +MTπ[t]

)
−
(
Q[t] +P−1

[t]

)
1
)]T

×
[
−π
(
MH−1

[t] M
T −P−1

[t] Q[t]

)−1 (
MH−1

[t]

(
g[t] +MTp[t]

)
−
(
Q[t] +P−1

[t]

)
1
)]

=− 1

µ3

(
p[t] − p∗)T [MH−1

[t] M
T −P−1

[t] Q[t]

]−1 [
MH−1

[t]

(
g[t] +MTp[t]

)
−
(
Q[t] +P−1

[t]

)
1
]

(73)

+
π

2µ3

[
MH−1

[t]

(
g[t] +MTp[t]

)
−
(
Q[t] +P−1

[t]

)
1
]T [

MH−1
[t] M

T −P−1
[t] Q[t]

]−2

×
[
MH−1

[t]

(
g[t] +MTp[t]

)
−
(
Q[t] +P−1

[t]

)
1
]
. (74)

For convenience, we let G[t] ,
[
MH−1

[t] M
T −P−1

[t] Q[t]

]
. Note that due to the H−1

[t] term in G[t], G
−1
[t]

scales as O(µ). We first analyze (73), which can be further decomposed as follows:

(73) =− 1

µ3

(
p[t] − p∗)T G−1

[t]

[
MH−1

[t]

(
g[t] +MTp[t]

)
−
(
Q[t] +P−1

[t]

)
1
]

(a)
= − 1

µ3

(
p[t] − p∗)T G−1

[t]

[
MH−1

[t]

(
g[t] − g∗ −MTp∗ +MTp[t]

)
−
(
Q[t] +P−1

[t]

)
1
]

=− 1

µ3

(
p[t] − p∗)T G−1

[t] MH−1
[t]

(
g[t] − g∗)− 1

µ2

(
p[t] − p∗)T G−1MH−1

[t] M
T
(
p[t] − p∗)

+
1

µ3

(
p[t] − p∗)T G−1

[t]

(
Q[t] +P−1

[t]

)
1

(b)

≤ − 1

µ3

(
p[t] − p∗)T G−1

[t] MH−1
[t]

(
g[t] − g∗) (75)

+
1

µ3

(
p[t] − p∗)T G−1

[t]

(
Q[t] +P−1

[t]

)
1, (76)

where (a) follows from subtracting the µ-ST condition g∗ + MTp∗ = 0; while (b) holds because

G−1
[t] MH−1

[t] M
T is positive semidefinite, which implies that

− 1

µ3

(
p[t] − p∗)T G−1

[t] MH−1
[t] M

T
(
p[t] − p∗) ≤ 0.
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As a result, to study the boundedness of (73) we only need to focus on the remaining two terms in

(75) and (76). We begin with (76), which can be further computed as follows:

(76) =
1

µ3

(
p[t] − p∗)T G−1

[t]

(
Q[t] +P−1

[t]

)
1

(a)
=

1

µ3

(
p[t] − p∗)T G−1

[t]

[
Q[t] −Q∗ −P−1

∗ +P−1
[t]

]
1

≤ 1

µ3

(
p[t] − p∗)T G−1

[t] M
(
y[t] − y∗)+ 1

µ2

(
p[t] − p∗)T G−1

(
P−1

[t] −P−1
∗

)
1

(b)

≤ 1

µ3

(
p[t] − p∗)T G[t]−1M

(
y[t] − y∗) , (77)

where equality (a) utilizes the µ-CS condition Q∗P∗ = −I (i.e., Q∗ = −P−1
∗ ) and inequality (b) holds

because:

1

µ3

(
p[t] − p∗)T G−1

[t]

(
P−1

[t] −P−1
∗

)
1

≤− 1

µ3Φλmin{G[t]}
(
p[t] − p∗)T (p[t] − p∗) ≤ 0,

where we let Φ , inft,n,f{p
(f)
n,[t]p

(f),∗
n }. Next, combining (77) with (75), we have

− 1

µ3

(
p[t] − p∗)T G−1

[t] M
[
H−1

[t]

(
g[t] − g∗)− (y[t] − ȳ∗)] . (78)

By the vector-valued Taylor expansion of g [24], we have

g∗ = g[t] +H[t]

(
ȳ∗ − y[t]

)
+ o(∥y[t] − ȳ∗∥)1,

which further implies that

H−1
[t]

(
g[t] − g∗)− (y[t] − ȳ∗) = o(∥y[t] − ȳ∗∥)1. (79)

Therefore, we have

(78) ≤ − 1

µ3

(
p[t] − p∗)T G−1

[t] MO
(∥∥y[t] − ȳ∗∥∥2)1

(a)

≤ −
O
(∥∥y[t] − ȳ∗∥∥2)
µ3λmin{G[t]}

∥∥p[t] − p∗∥∥ ∥M1∥, (80)

where inequality (a) follows from Cauchy-Schwarz inequality. From the boundedness result of p in

Lemma 4, we have that
∥∥p[t] − p∗∥∥ is bounded. Also, from the control scheme itself, we know that

the entries in y[t] is fundamentally bounded by the link capacities. Hence, we can conclude that (80)

is upper-bounded by some constant. By letting

B2 ,
∥M1∥

µ2λmin{G}
sup
t

{∥∥y[t]− ȳ∗∥∥ ∥∥p[t]−p∗∥∥},
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(cf. B2 in (23)) where we leave a µ2-factor inside the denominator to cancel out the µ-factors in∥∥p[t] − p∗∥∥ and 1
λmin{G[t]}

, we have

− 1

µ3

(
p[t] − p∗)T G−1

[t] M
[
H−1

[t]

(
g[t] − g∗)− (y[t] − ȳ∗)] ≤ (78) ≤ 1

µ
B2. (81)

Based on the above derivations, we can finally bound (73) as:

(73) ≤ (75) + (76) ≤ 1

µ
B2. (82)

Lastly, we evaluate (74), for which we have

(74) ≤ 1

2µ3

[
MH−1

[t]

(
g[t] +MTp[t]

)
−
(
Q[t] +P−1

[t]

)
1
]T

G−2
[t]

×
[
MH−1

[t]

(
g[t] +MTp[t]

)
−
(
Q[t] +P−1

[t]

)
1
]

≤ 1

2µ3λ2
min{G[t]}

∥∥∥MH−1
[t]

(
g[t] +MTp[t]

)
−
(
Q[t] +P−1

[t]

)
1
∥∥∥2

=
1

2µ3λ2
min{G[t]}

∥∥∥M(
H−1

[t] g[t] − y[t]

)
+MH−1

[t] M
Tp[t] −P−1

[t] 1
∥∥∥2

(a)

≤ 1

2µ3λ2
min{G[t]}

[∥∥∥M(
H−1

[t] g[t] − y[t]

)∥∥∥+ ∥∥∥MH−1
[t] M

Tp[t]

∥∥∥+ ∥∥∥P−1
[t] 1

∥∥∥]2
=

1

2µ3λ2
min{G[t]}

[∥∥∥M(
H−1

[t]

(
g[t] − g∗)− (y[t] − ȳ∗))+M

(
H−1

[t] g
∗ − ȳ∗

)∥∥∥
+
∥∥∥MH−1

[t] M
Tp[t]

∥∥∥+ ∥∥∥P−1
[t] 1

∥∥∥]2
(b)

≤ 1

2µ3λ2
min{G[t]}

[
O
(
∥y[t] − ȳ∗∥2

)
∥M1∥+

∥∥∥M(
H−1

[t] g
∗ − ȳ∗

)∥∥∥
+
∥∥∥MH−1

[t] M
Tp[t]

∥∥∥+ ∥∥∥P−1
[t] 1

∥∥∥]2 , (83)

where (a) is due to triangular inequality and (b) follows from (79). Note that in (83), O
(
∥y[t] − ȳ∗∥2

)
∥M1∥

is upper-bounded since, by our algorithmic design, ∥y[t]∥ is bounded;
∥∥∥M(

H−1
[t] g

∗ − ȳ∗
)∥∥∥ is upper-

bounded due to the Lipschitz continuity of g as well as the µ-factor cancellation between H−1
[t] and

g∗; and
∥∥∥MH−1

[t] M
Tp[t]

∥∥∥ is upper-bounded due to: i) the boundedness of ∥p[t]∥ from Lemma 4, and

ii) the µ factors cancellation between H−1
[t] and p[t]. Also,

∥∥∥P−1
[t] 1

∥∥∥ is a diminishing term when µ is

large. Therefore, from the above discussions, we can conclude that (83) is upper-bounded. By letting

B3 ,
1

2µ2λ2
min{G}

sup
t

{[
∥y[t] − ȳ∗∥∥M1∥

+ ∥M(H−1
[t] g

∗ − ȳ∗)∥∥MH−1
[t] M

Tp[t]∥+ ∥P−1
[t] 1∥

]}
,

we have

(74) ≤ 1

µ
B3. (84)
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Finally, combining all the results in (70), (72), (82), and (84), we arrive at the following result for

the one-slot drift analysis:

V
(
y[t+1],p[t+1]

)
− V

(
y[t],p[t]

)
≤ −R∥y[t] − ȳ∗∥2 + πB1 +

1

µ
B2 +

1

µ
B3. (85)

B.3 Final Telescoping Step

Clearly, we can see that if π scales as O( 1µ), (85) implies that the following relationship holds:

V
(
y[t+1],p[t+1]

)
− V

(
y[t],p[t]

)
≤ −R∥y[t] − ȳ∗∥2 + 1

µ
B̂, (86)

where B̂ = αB1+B2+B3 for some α > 0. Writing this one-slot drift expressions for t = 0, . . . , T −1,

we have a telescoping series. Summing all the terms in this series yields:

V
(
y[T ],p[T ]

)
− V

(
y[0],p[0]

)
≤ −R

T−1∑
t=0

∥y[t] − ȳ∗∥2 + T

µ
B̂.

Dividing both sides by T and rearranging terms, we have

R

T

T−1∑
t=0

∥y[t] − ȳ∗∥2 ≤ B̂

µ
− 1

T

[
V
(
y[T ],p[T ]

)
− V

(
y[0],p[0]

)]
.

Dividing both sides by R and taking the limit as T goes to infinity, we have

lim sup
T→∞

1

T

T−1∑
t=0

∥y[t] − ȳ∗∥2 ≤ B2

µ
, (87)

where we let B2 , B̂/R. Therefore, as T gets large, we have∣∣∣∣∣ 1T
T−1∑
t=0

(
y[t] − ȳ∗)∣∣∣∣∣ (a)≤ 1

T

T−1∑
t=0

∣∣y[t] − ȳ∗∣∣ (b)≤
√√√√ 1

T

T−1∑
t=0

∥y[t] − ȳ∗∥2 ≤ B
√
µ
, (88)

where (a) follows from triangular inequality and (b) is due to the relationship between l1 and l2

norms. Then, the result stated in Theorem 1 follows by taking lim sup and lim inf, respectively. This

completes the proof of Theorem 1.

C Proof of Lemma 5

Recall that in each time-slot t, the primal and dual Newton directions are obtained via the following

linear equation system:[
H[t] MT

−P[t]M −Q[t]

][
∆y[t]

∆p[t]

]
= −

[
g[t] +MTp[t]

−(P[t]Q[t] + I)1

]
.

40



From the first row, we have

H[t]∆y[t] +MT∆p[t] = −g[t] −MTp[t]. (89)

Moving the term MT∆p[t] to the RHS and noting that p̃[t+1] = p[t] + ∆p[t], we have H[t]∆y[t] =

−
(
g[t] +MT p̃[t+1]

)
, which implies that

∆y[t] = −H−1
[t]

(
g[t] +MT p̃[t+1]

)
, (90)

which is exactly the expression in (29).

Next, from the second row, we have

−P[t]M∆y[t] −Q[t]∆p[t] = Q[t]p[t] + 1

⇒−Q[t]

(
p[t] +∆p[t]

)
= P[t]M∆y[t] + 1

(a)⇒−Q[t]p̃[t+1] = P[t]M
[
−H−1

[t]

(
g[t] +MT p̃[t+1]

)]
+ 1

⇒−Q[t]p̃[t+1] = −P[t]MH−1
[t] g[t] −P[t]MH−1

[t] M
T p̃[t+1] + 1

⇒
(
P[t]MH−1

[t] M
T −Q[t]

)
p̃[t+1] = −P[t]MH−1

[t] g[t] + 1

(b)⇒
(
MH−1

[t] M
T −P−1

[t] Q[t]

)
p̃[t+1] = −MH−1

[t] g[t] +P−1
[t] 1

⇒p̃[t+1] =
(
MH−1

[t] M
T −P−1

[t] Q[t]

)−1

︸ ︷︷ ︸
=G−1

[
−MH−1

[t] g[t] +P−1
[t] 1

]
, (91)

where (a) utilizes p̃[t] = p[t] + ∆p[t] and ∆y[t] = −H−1
[t]

(
g[t] +MT p̃[t+1]

)
; and (b) follows from

multiplying P−1
[t] on both sides. This completes the proof.

D Proof of Lemma 7

First, consider the diagonal entries in Df . Note that Df =
s2f
µ b(f)(b(f))T +

∑L
l=1(x

(f)
l )2a

(f)
l (a

(f)
l )T .

From [9, Lemma 2], the i-th diagonal entry in a
(f)
l (a

(f)
l )T is equal to 1 if the corresponding node of

the i-th entry, say n, is either Tx(l) or Rx(l). Thus, when summing over all l, the number of ones is

precisely given by the number of links that have node n either as its transmitting node or receiving

node, i.e., the links that are in either O (n) and I (n). Thus, we have (
∑L

l=1(x
(f)
l )2a

(f)
l (a

(f)
l )T )ii =∑

l∈I(n)∪O(n)(x
(f)
l )2. Also, from [9, Lemma 1], we have that the i-th diagonal entry is equal to 1 if

n = Src(f). Hence, we have

(Df )ii =



∑
l∈O(n)∪I(n)(x

(f)
l )2 +

s2f
µ + 1

p
(f)
n

[∑
l∈O(n) x

(f)
l − sf1f (n)−

∑
l∈I(n) x

(f)
l

]
if row i corresponds to node n and n = Src(f),∑
l∈O(n)∪I(n)(x

(f)
l )2 + 1

p
(f)
n

[∑
l∈O(n) x

(f)
l − sf1f (n)−

∑
l∈I(n) x

(f)
l

]
otherwise,
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which is the same expression as in Lemma 7.

Next, consider the off-diagonal entries in Df . Again, from [9, Lemma 2], we know that the (i, j)-

th entry in a
(f)
l (a

(f)
l )T is equal to −1 if the corresponding nodes of the (i, j)-th entry, say n1 and

n2, are Tx(l) and Rx(l), or vice versa. Thus, when summing over all l, the number of −1 entries is

precisely given by the number of links that have nodes n1 and n2 either as their transmitting node

and receiving node, i.e., the links that are in Γ(n1, n2). Hence, we have

(Df )ij =

−
∑

l∈Γ(n1,n2)
(x

(f)
l )2 if row i and column j correspond to two connected nodes n1 and n2,

0 otherwise,

which is the same expression as in Lemma 7, and the proof is complete.

E Proof of Proposition 13

First, note that, if y[t] and p[t] are primal and dual feasible, MH−1
[t] M

T −P−1
[t] Q[t] ≻ 0 because f(y) is

convex. Hence, (Λ[t]+αΩ)− (αΩ−Ω[t]) is positive definite. Next, we check the positive definiteness

of (Λ[t] + αΩ) + (αΩ−Ω[t]). Note that

(Λ[t] + αΩ) + (αΩ−Ω[t]) = Λ[t] + 2αΩ[t] −Ω[t]. (92)

From the definition of Λk, Lemma 7, and Lemma 8, we have that all diagonal entries in Λk are

positive. Hence, Λ[t] ≻ 0. On the other hand, by the definitions of Ω[t] and Ω[t], we have that the

entries of each row in 2αΩ[t] −Ω[t] satisfy

(2αΩ[t] −Ω[t])ii −
∑
j ̸=i

|(2αΩ[t] −Ω[t])ij |

= (2α− 1)
∑
j ̸=i

|(Ω[t])ij | > 0, for α >
1

2
.

Also, it is clear from the definitions of Ω[t] and Ω[t] that (2αΩ[t] − Ω[t])ii > 0. Thus, 2αΩ[t] − Ω[t]

is diagonally dominant and hence positive definite. Therefore, Λ[t] + 2αΩ[t] − Ω[t] is also positive

definite, and the proof is complete.

F Proof of Theorem 15

The expressions in Theorem 15 can be derived by computing the element-wise expansion of (44).

First, since (Λ[t] +αΩ[t]) is diagonal, and its inverse can be easily computed by taking the inverse of

each diagonal entry. Thus, we begin with computing each diagonal entry in (Λ[t] + αΩ[t]). Toward

42



this end, we first define the following index function βf (n), n ̸= Dst(f):

βf (n) ,

n if n < Dst(f),

n− 1 if n > Dst(f).
(93)

Since Λ[t] contains the main diagonal of G = MH−1
[t] M

T −P−1
[t] Q[t], from Theorem 10, we obtain that

(Λ[t])ii =



∑
Φ(n)(x

(f)
l )2

(
1− (x

(f)
l )2

∥x̂l∥2

)
+ 1

p
(f)
n

[∑
l∈O(n) x

(f)
l − sf1f (n)−

∑
l∈I(n) x

(f)
l

]
+

1
−µU ′′

f (sf )+
1

(sf )2
, if n = Src(f),∑

Φ(n)(x
(f)
l )2

(
1− (x

(f)
l )2

∥x̂l∥2

)
+ 1

p
(f)
n

[∑
l∈O(n) x

(f)
l − sf1f (n)−

∑
l∈I(n) x

(f)
l

]
, if n ̸= Src(f),

(94)

where the index i satisfies i = (f − 1)(N − 1) + βf (n).

Next, note that each diagonal entry in Ω[t] is the row sum of non-diagonal entries in MH−1
[t] M

T −
P−1

[t] Q[t]. Therefore, from Theorem 10, we have that

(Ω[t])ii =
∑

l∈Φ(n)\Ψ(n,f)

(x
(f)
l )2

(
1−

(x
(f)
l )2

∥x̂l∥2
)
+

F∑
f ′=1,̸=f

∑
l∈Ψ(n,f ′)

(x
(f)
l x

(f ′)
l )2

∥x̂l∥2
. (95)

Then, using the indicator function 1Ψ(n,f) and combining (94) and (95), we have that

(Λk + αΩ[t])ii =



∑
l∈Φ(n)[1 + α(1− 1Ψ(n,f)(l))](x

(f)
l )2

(
1− (x

(f)
l )2

∥x̂l∥2

)
+

1

p
(f)
n

[∑
l∈O(n) x

(f)
l − sf1f (n)−

∑
l∈I(n) x

(f)
l

]
+∑F

f ′=1, ̸=f

(∑
l∈Ψ(n,f ′)

α(x
(f)
l x

(f ′)
l )2

∥x̂l∥2

)
if n ̸= Src(f),∑

l∈Φ(n)[1 + α(1− 1Ψ(n,f)(l))](x
(f)
l )2

(
1− (x

(f)
l )2

∥x̂l∥2

)
+

1

p
(f)
n

[∑
l∈O(n) x

(f)
l − sf1f (n)−

∑
l∈I(n) x

(f)
l

]
+∑F

f ′=1, ̸=f

(∑
l∈Ψ(n,f ′)

α(x
(f)
l x

(f ′)
l )2

∥x̂l∥2

)
+ 1

−µU ′′
f (sf )+

1
(sf )2

if n = Src(f),

which is the same as the definition of U
(f)
n [k] in (46).

Next, consider the entries in (αΩ[t] − Ω[t])p[t]. Recall from Theorem 10 that the matrix G =

M̃H̃−1
k M̃T − P−1

[t] Q[t] has a partitioned matrix structure. Thus, the vector (αΩ[t] −Ω[t])p[t] can be

partitioned into F blocks, where each block is of the form

((αΩ[t] −Ω[t])p[t])f = −Rfp
f
[t] +

F∑
f ′=1, ̸=f

Gff ′p
(f ′)
[t] , f = 1, . . . , F, (96)

where Rf is obtained by replacing the main diagonal of Df − D̂f with the corresponding entries in

−αΩ[t]. Then, by computing the entries in −Rfp
f
[t] and noticing the special structure in Rf (only
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containing entries 1, −1, and 0), we have

(−Rfp
f
[t])n =

∑
l∈I(n)

(x
(f)
l )2

(
1−

((x
(f)
l )2)

∥x̂l∥2
)
(p

(f)
Tx(l) − αp

(f)
Rx(l))+

∑
l∈O(n)\Ψ(n,f)

(x
(f)
l )2

(
1−

((x
(f)
l )2)

∥x̂l∥2
)
(p

(f)
Rx(l) − αp

(f)
Tx(l))−

F∑
f ′=1,̸=f

( ∑
l∈Ψ(n,f ′)

α(x
(f)
l x

(f ′)
l )2

∥x̂l∥2
)
pfn,

which is exactly the definition of V
(f)
n,1 (k) in (47).

Likewise, by computing the entries in
∑F

f ′=1, ̸=f Gff ′p
(f ′)
[t] , we have

( F∑
f ′=1, ̸=f

Gff ′p
(f ′)
[t]

)
n
=

F∑
f ′=1,̸=f

(( ∑
l∈O(n)

(x
(f)
l x

(f ′)
l )2

∥x̂l∥2
−
∑

l∈I(n)

(x
(f)
l x

(f ′)
l )2

∥x̂l∥2
)
(p

(f ′)
Tx(l) − p

(f ′)
Rx(l))

)
,

which is the same as the definition of V
(f)
n,2 (k) in (48).

Finally, consider the term MH−1
[t] g[t]. Note that MH−1

[t] g[t] can be decomposed into

MH−1
[t] g[t] = BS−1∇sf(y[t]) +

L∑
l=1

−AlX
−1
l ∇xl

f(y[t]),

where s , [s1, . . . , sF ]
T and xl , [x

(1)
l , . . . , x

(F )
l ]T . Now, first consider the term BS−1∇sf(y[t]). Using

the diagonal structure of B and S, it can be verified that

(BS−1∇sf(y[t]))
(f)
n =


sf (1+µsfU

′
f (sf ))

µs2fU
′′
f (sf )−1

if n = Src(f),

0 otherwise.

Recall that H−1
[t] can be decomposed into a diagonal matrix and a rank-one update matrix. Hence,

we have

−AlX
−1
l ∇xl

f(y[t]) = −AlDiag
{
(x

(1)
l )2, . . . , (x

(F )
l )2

}


1
δl
− 1

x
(1)
l

...
1
δl
− 1

x
(F )
l

+

1

∥x̂l∥2
Al


(x

(1)
l )4 · · · (x

(1)
l x

(F )
l )2

...
. . .

...

(x
(F )
l x

(1)
l )2 · · · (x

(F )
l )4




1
δl
− 1

x
(1)
l

...
1
δl
− 1

x
(F )
l

.
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Hence, computing each term in the above decomposition, then adding BS−1∇sf(y[t]), and then

summing over all l, we obtain that

(MH−1
[t] ∇f(y[t]))

(f)
n =



(
1− x

(f)
l
δl

)[∑
l∈O(n)

(
1−

∑F
f ′=1

(x
(f)
l )2

∥x̂l∥2
x
(f ′)
l

)
−∑

l∈I(n)

(
1−

∑F
f ′=1

(x
(f)
l )2

∥x̂l∥2
x
(f ′)
l

)]
+ 1

p
(f)
n

if n ̸= Src(f),∑
l∈O(n)

(
1−

∑F
f ′=1

(x
(f)
l )2

∥x̂l∥2
x
(f ′)
l

)
−∑

l∈I(n)

(
1−

∑F
f ′=1

(x
(f)
l )2

∥x̂l∥2
x
(f ′)
l

)]
+ 1

p
(f)
n

+
sf (1+µsfU

′
f (sf ))

µs2fU
′′
f (sf )−1

if n = Src(f),

which is the same as the definition of W
(f)
n [k] as in (49). Finally, the result in (45) simply follows

from Proposition 13, and the proof is complete.
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