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Abstract

Cooperative networking is known to have significant potential in increasing network capacity and transmission

reliability. Although there have been extensive studies on applying cooperative networking in multi-hop ad hoc

networks, most works on cooperative network optimization are limited to the basic three-node relay scheme and

single-antenna systems. These two limitations are interconnected and both due to a limited understanding of the

optimal power allocation structure in MIMO cooperative networks (MIMO-CN). In this paper, we study in depth

the structural properties of the optimal power allocation in MIMO-CN. More specifically, we show that the optimal

power allocation at the source and each relay follows a matching structure in MIMO-CN. This result generalizes

the power allocation result under the basic three-node setting to the multi-relay setting, for which the optimal power

allocation structure has been heretofore unknown. We further quantify the performance gain due to cooperative relay

and establish a connection between cooperative relay and pure relay. Finally, based on these structural insights, we

reduce the MIMO-CN rate maximization problem to an equivalent scalar formulation. We then propose a global

optimization method to solve this simplified and equivalent problem.

I. INTRODUCTION

A. Background and Motivation

The concept of cooperative networking [1], [2] can trace its roots back to the 1970s, when information-theoretic

studies were first conducted in [3], [4] under the theme of “relay channels.” In recent years, cooperative networking

has received substantial interest from the wireless networking research community. Many interesting problems for

cooperative networks have been actively researched, such as throughput-optimal scheduling [5], network lifetime

maximization [6], distributed routing [7], MAC layer protocol design [8], just to name a few. Although there have

been extensive studies concerning cooperative networks, most works on optimizing the performance of cooperative

networks have the following major limitations:

i) Limited to the basic three-node relay scheme. The basic three-node relay scheme is shown in Fig. 1, where

the message transmitted from the source S to the destination D is relayed by a node R, which can overhear
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Fig. 2. A cooperative network with multiple relays.

the message. The benefit of such a cooperative transmission comes from the fact that the destination node can

coherently combine two received signals coming from independent paths such that the transmission reliability can

be greatly improved. In an ad hoc network environment, however, the message from the source is likely to be

overheard by multiple neighboring nodes. A common cooperative communication approach in this situation is

“relay assignment,” i.e., we just choose one of the multiple neighboring nodes to be the relay node for which the

three-node relay scheme can be applied (see, e.g., [9], [10] and references therein). Despite its simplicity, relay

assignment is clearly suboptimal since all such neighboring nodes can potentially serve as relays to further improve

the system performance, as shown in Fig. 2.

ii) Limited to single-antenna systems. In the current literature, research on cooperative networks with MIMO-

enabled nodes remains very limited. In cooperative networks, it is very interesting to explore the idea of deploying

multiple antennas at each node. This is because, with multiple antennas, the source and the relays can multiplex

independent data streams by exploiting the inherent independent spatial channels. As a result, the end-to-end channel

capacity can scale almost linearly as the number of antennas increases.

While the above two limitations are seemingly unrelated, they are in fact both associated with the limited

understanding of the optimal power allocation structure of MIMO cooperative networks (MIMO-CN). To see why

the first limitation is also related to MIMO, let us consider the multi-relay network in Fig. 2, where each node has

a single antenna. In this example, we can treat all single-antenna relay nodes R1, . . . , RM as a single virtual relay

node with M antennas. In that sense, analyzing this multi-relay network is closely related to analyzing a three-node

cooperative network where the relay node is MIMO-enabled. Thus, we can see that besides the attractive capacity

benefits of MIMO, studying MIMO-CN is of theoretical importance because it generalizes previous studies on

single-antenna-based cooperative communication, which can be viewed as special cases of MIMO-CN.

In this paper, we explore the structural properties of optimal power allocation in MIMO-CN with multiple relays.

More specifically, we consider the optimal power allocation structure at the source and each relay node so that the

end-to-end achievable rate can be maximized.

B. Amplify-and-Forward (AF) or Decode-and-Forward (DF)?

Before studying MIMO-CN with multiple relays, an interesting and important question to answer is: What

cooperative relay strategy should we employ in MIMO-CN with multiple relays? There are two main categories of

cooperative relay strategies, namely, amplify-and-forward (AF) and decode-and-forward (DF) [1]. Simply speaking,
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under AF, the relay node amplifies and retransmits the received signal without decoding the message. Under DF,

the relay node decodes, re-encodes, and retransmits the signals. These two approaches are sometimes referred to

as “non-regenerative” and “regenerative” strategies in the literature, respectively, and they both have pros and cons

under different network settings.

In this work, our focus is on AF-based MIMO-CN. The first apparent reason is the lower complexity of AF since

no decoding/encoding is needed under AF. This lower complexity is even more attractive in MIMO-CN, where

decoding multiple data streams could be computationally intensive.

In addition to simplicity, a far more important reason for choosing AF in this work is because AF outperforms

DF in the multi-relay setting. To see this, we again use the network in Fig. 2 as an example. We let SNRsd, SNRsri

and SNRrid represent the signal-to-noise ratios of the S → D, S → Ri and the Ri → D links, respectively. Then,

the end-to-end effective SNR under AF in this case is M+1
3 , while the end-to-end effective SNR under DF is 1 (see

Appendix A for details). Thus, it is clear that as long as M > 2, the achievable rate under AF is always higher

than that under DF. In general, as the number of relays increases in MIMO-CN, the effective SNR under AF scales

linearly, while the effective SNR under DF remains a constant.

C. Main Results and Contributions

The main results and contributions of this paper are as follows:

i) We show that the optimal power allocation at each relay follows a matching structure. More precisely, the

diagonalization of each relay’s power allocation matrix matches to certain eigen-directions of the joint source-relay

and relay-destination channels. We further show that this matching structure is true regardless of the channel state

information (CSI) assumption at the source, and regardless of the presence of the source-destination link. We point

out that our result generalizes the matching structure under the basic three-node setting to the multi-relay setting,

for which the optimal power allocation structure has been heretofore unknown. The proof of this result is not a

trivial extension of that for the basic three-node relay setting because, as we shall see in Section III, the relay power

allocation in the multi-relay setting is subject to a unique constraint.

ii) Through an analysis of the channel structures in MIMO-CN, we establish the relationship between MIMO-CN

and multi-hop MIMO networks with pure relay links. More specifically, we quantify the performance gain due to

cooperative relay. Not only does this result make the proof of the optimal power allocation structure in MIMO-CN

easier, but it also builds a connection between cooperative relay and pure relay, advancing our understanding of the

benefits of cooperative communications.

iii) Based on the structural insights of the optimal power allocation, we reduce the MIMO-CN rate maximization

problem to an equivalent scalar formulation, which is similar to that of the conventional single-antenna three-node

relay problem. We analyze the structure and convexity properties of the equivalent problem, and then propose a

global optimization algorithm based on a branch-and-bound scheme coupled with a custom-designed convex-hull

relaxation (BB/CHR), which guarantees finding a global optimal solution for this nonconvex problem.
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D. Paper Organization

The remainder of this paper is organized as follows. Section II discusses the related work, putting our work

in a comparative perspective. Section III presents the network model and problem formulation. In Section IV and

Section V, we study the optimal power allocation structures corresponding to pure relay and cooperative relay

paradigms, and point out their connections. Based on these structural results, we simplify and reformulate the

underlying optimization problems. In Section VI, we propose a novel global optimization method based on the

BB/CHR framework to solve the reformulated equivalent problem. Numerical results are also provided to show the

efficacy of the proposed algorithms. Section VII concludes this paper.

II. RELATED WORK

Since the benefits of cooperative networking were recognized [1], [2], several initial attempts on extending

cooperative networking to MIMO have been reported in the literature [11]–[16]. In [11], Tang and Hua first

considered the optimal relay amplifying matrix for the basic three-node MIMO-CN under the assumption that

the source-relay CSI is unknown. Their main conclusion is that when the direct link between the source and

the destination is not present (i.e., pure relay), the optimal amplifying matrix adopts a “matching” structure.

Coincidentally, Muñoz-Medina et al. [12] independently arrived at the same conclusion via a different proof

technique. Later in [17], Fang et al. generalized the matching result to the three-node MIMO-CN network where the

source has full CSI. Recent works on MIMO-CN started to consider more complex relay settings. In [18], Fu et al.

studied MIMO-CN with multiple AF relays, which is similar to our setting. However, their work differs from ours

in that they assumed a sum power constraint across all relay nodes. This assumption is usually not realistic since

each relay has its own power budget. Thus, a power constraint on each individual node is more appropriate. As

we shall see later, imposing an individual power constraint on each relay node results in a more challenging power

allocation problem. It is worth pointing out that the three-node multi-carrier MIMO-CN considered in [15] can also

be viewed as a MIMO-CN with multiple relays. Compared to our network setting, the major difference is that each

source-relay-destination path in [19] operates using orthogonal channels (subcarriers) that do not cooperate with

each other. This setting yields a more tractable problem, which can be thought of as a special case of the model

we consider in this paper.

III. NETWORK MODEL AND PROBLEM FORMULATION

We first introduce the notation used in this paper. We use boldface to denote matrices and vectors. For a complex-

valued matrix M, we let M∗ and M† denote the conjugate and conjugate transpose of M, respectively. Tr{M}

denotes the trace of M. We let IN denote the N ×N identity matrix. M ≽ 0 represents that M is Hermitian and

positive semidefinite (PSD). Diag{M1 . . .Mn} represents the block diagonal matrix with matrices M1, . . . ,Mn

on its main diagonal. M ◦ N represents the Hadamard product of matrices M and N. We let (M)ij denote the

entry in the i-th row and j-th column in matrix M and let (v)j denote the j-th entry in vector v.
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Fig. 4. An AF-based MIMO-CN with M relay nodes grouped

as one virtual super relay node.

We consider an AF-based MIMO-CN as shown in Fig. 3. The source node S transmits messages to the destination

node D, assisted by M relay nodes R1, R2, . . ., RM . The source and the destination nodes have Ns and Nd antennas,

respectively. For ease of exposition, we assume that each relay node has Nr antennas in this paper. We note that

the generalization to cases where each relay node has distinct number of antennas can also be incorporated in our

subsequent analysis in a similar fashion but at the expense of more complicated notation. We let H[i]
sr ∈ CNr×Ns

denote the channel gain matrix between the source and the i-th relay. We let H[i]
rd ∈ CNd×Nr denote the channel

gain matrix between the i-th relay and the destination. The channel gain matrix for the direct link between the

source and the destination is denoted by Hsd ∈ CNd×Ns .

Due to self-interference, each relay node cannot transmit and receive in the same channel at the same time (i.e.,

we operate in a half-duplex mode). Thus, a transmission in an AF-based MIMO-CN takes two time slots. In the

first time slot, the source transmits a message to the destination node. Due to the broadcast nature of wireless

media, the same message can be overheard by all relays. In the second time slot, each relay simply amplifies and

transmits its received signal to the destination without decoding the message. At the end of the second time slot,

the destination coherently combines all received signals to decode the message.

Throughout the rest of the paper, we classify MIMO-CN into two cases depending on whether or not the direct

channel between S and D is strong enough to support communication. We refer to the case where the direct channel

is absent as “pure relay” (PR) and refer to the normal case as “cooperative relay” (CR). Although PR is a special

case of CR, this categorization proves to be useful in that: 1) it is easier to obtain structural properties under the

simpler PR case and these properties provide important insights to the more complex CR case; 2) this categorization

helps build a connection between PR and CR and deepens our understanding of cooperation benefits.

A. Input-Output Signal Model

1) Source-Relay: In a MIMO-CN, the received signal at the i-th relay y
[i]
r can be written as

y[i]
r = H

[i]
srxs + n[i]

r , i = 1, 2, . . . ,M, (1)

where xs ∈ CNs×1 represents the transmit signal vector and n
[i]
r ∈ CNr×1 represents the zero-mean circularly

symmetric Gaussian noise vector seen at the i-th relay.

For notational convenience, we can treat the relay nodes R1, . . . , RM as a virtual super relay node R with MNr

antennas, as shown in Fig. 4. This equivalent form would allow us to formulate an AF-based MIMO-CN in a more



6

compact form. However, we emphasize that although this equivalent form appears to be similar to the three-node

relay networks, the unique constraint on the amplification factor yields a different and more challenging problem

(more on this later). As shown in Fig. 4, we let Hsr ,
[
H

[1]†
sr , . . . ,H

[M ]†
sr

]† ∈ CMNr×Ns represent the combined

relay channel matrix between the source and the relays. Also, we let nr , [n
[1]†
r , . . . ,n

[M ]†
r ]† ∈ CMNr×1. Then,

the combined received signal at the virtual super relay node, defined as yr , [y
[1]†
r , . . . ,y

[M ]†
r ]† ∈ CMNr , can be

conveniently written as yr = Hsrxs + nr.

2) Amplification-and-Forward: Recall that in an AF-based MIMO-CN, each relay amplifies the received signal.

Compared to conventional single-antenna AF-based cooperative networks (CN), a major difference in AF-based

MIMO-CN is the form of the amplification factor. Unlike single-antenna CN where the amplification factor can

be represented by a scalar, in multi-relay MIMO-CN, the general form of the amplification factor at the i-th relay

should be represented by a matrix Ai ∈ CNr×Nr . That is, the relay signal at the i-th relay node x
[i]
r can be written

as x
[i]
r = Aiy

[i]
r . Physically, this means that the transmit signal at each antenna in the second time slot is a sum

of amplified received signals from all antennas in the first time slot. To see this, we can expand each entry in the

transmit signal x[i]
r = Aiy

[i]
r as

(x[i]
r )j =

Nr∑
k=1

(Ai)jk(y
[i]
r )k, j = 1, 2, . . . , Nr. (2)

It is worth pointing out that the AF strategy is completely determined by the structure of Ai. For example,

if Ai is a diagonal matrix, then it can be seen from (2) that each antenna simply amplifies and retransmits its

own received signal (i.e., there is no summation of signals from other antennas). Since the structure of each Ai

could significantly impact the performance of an AF-based MIMO-CN, one of the main goals in this paper is to

understand the optimal structural property of the amplification matrix at each relay node.

Due to the distributed nature of ad hoc network environments, the relay nodes cannot share their received signals

with each other. As a result, although we can represent a multi-relay MIMO-CN in an equivalent form as shown

in Fig. 4, the virtual node R does not really function as a single node. In other words, each Ri within R cannot

amplify and forward other relay nodes’ signals because they do not share antennas. Mathematically, this can be

modeled by introducing a block diagonal constraint on A, which denotes the amplification matrix for the virtual

super relay node R in Fig. 4, i.e.,

A = Diag{A1,A2, . . . ,AM} ∈ CMNr×MNr . (3)

With matrix A, we can represent the transmit signal of the virtual super relay node as xr = Ayr = A(Hsrxs+

nr).

3) Relay-Destination: As shown in Fig. 4, we use a matrix Hrd ,
[
H

[1]
rd , . . . ,H

[M ]
rd

]
∈ CNd×MNr to represent

the combined channel gain matrix between the relays and the destination. In the PR case, the received signal at the

destination node yd can be written as

yd = Hrdxr + n
(2)
d = HrdAHsrxs + (HrdAnr + n

(2)
d ), (4)

where n
(2)
d ∈ CNd is a zero-mean circularly symmetric Gaussian noise vector seen at D in the second time slot.
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In the CR case, since a direct channel is present, we can expand the received signal yd in (4) as follows:

yd =

 HrdAHsr

Hsd

xs +

 HrdA INd
0

0 0 INd




nr

n
(2)
d

n
(1)
d

, (5)

where n
(1)
d ∈ CNd denotes the zero-mean circularly symmetric Gaussian noise vector seen at D in the first time

slot.

B. Problem Formulation

1) Achievable Rate Computation: Under PR, the achievable rate of an AF-based MIMO-CN can be computed

as

IPR(Q,A) =
1

2
log2

∣∣∣INd
+ (HrdAHsr)Q(HrdAHsr)

†(σ2
dINd

+ σ2
rHrdAA†H†

rd)
−1
∣∣∣ , (6)

where Q , E{xx†} represents the input signal covariance matrix (i.e., the source power); and σ2
r and σ2

d denote

the variances of nr and n
(2)
rd , respectively. The factor 1

2 in (6) accounts for the fact that two time slots are required

to complete a transmission. By letting H̄sd , HrdAHsr denote the equivalent end-to-end channel under PR and

letting R̄ , σ2
dINd

+ σ2
rHrdAA†H†

rd denote the equivalent noise power at the destination, we can compactly

rewrite (6) as

IPR(Q,A) =
1

2
log2

∣∣∣INd
+ H̄sdQH̄†

sdR̄
−1
∣∣∣ . (7)

Similarly, we can write the achievable rate under CR as follows:

ICR(Q,A) =
1

2
log2

∣∣I2Nd
+HQH†R−1

∣∣ . (8)

In (8), the equivalent end-to-end channel gain matrix H ∈ C2Nd×Ns under CR is defined as

H ,

 H̄sd

Hsd

 =

 HrdAHsr

Hsd

,
and the equivalent noise power R ∈ C2Nd×2Nd is defined as

R,

 R̄ 0

0 σ2
dINd

=
 σ2

dINd
+ σ2

rHrdAA†H†
rd 0

0 σ2
dINd

.
2) Power Constraints: Due to the maximum transmit power limit at the source and at each relay node, we have the

following power constraints for the source and each relay node: Tr(Q) ≤ PT , Tr(Ai(σ
2
rINr+HsrQH†

sr)A
†
i ) ≤ PR,

i = 1, . . . ,K, where PT and PR represent the maximum transmit power limit at the source node and at each relay

node, respectively. For compactness, we define the following constraint sets:

Ω , {Q |Tr(Q) ≤ PT } ,

Ψ ,

Diag{A1, . . . ,AM}

∣∣∣∣∣∣ Tr(Ai(σ
2
rINr +HsrQH†

sr)

A†
i ) ≤ PR,∀i = 1, 2, . . . ,K

 .
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3) Problem Formulation: To maximize the end-to-end achievable rate, we need to find an optimal Q and A to

maximize IPR(Q,A) under PR or ICR(Q,A) under CR. This can be formulated as the following joint source-relay

power optimization (PO) problem under PR and CR, respectively:

PO-PR: Maximize IPR(Q,A)

subject to Q ∈ Ω,A ∈ Ψ,
(9)

PO-CR: Maximize ICR(Q,A)

subject to Q ∈ Ω,A ∈ Ψ.
(10)

We remark that both PO-PR and PO-CR can be naturally decomposed into two parts as follows: maxQ∈Ω I∗j (Q),

where I∗j (Q) , maxA∈Ψ Ij(Q,A), and where j ∈ {PR,CR}. Hence, solving PO-PR and PO-CR boils down to

solving an inner subproblem with respect to A when Q is held fixed and an outer main program with respect to Q.

Due to the complex matrix variables and operations, directly tackling such problems is intractable in general. For

PO-PR and PO-CR, however, it turns out that we can exploit the inherent special structure to significantly reduce

the complexity of the problems. Thus, in what follows, we will first study the structural properties of the optimal A

and Q in PO-PR and PO-CR. Based on these properties, we will reformulate PO-PR and PO-CR. We will start with

the relatively simpler PO-PR problem. It will soon be clear that the results under the PR case provide fundamental

insights into the more complex PO-CR problem.

IV. OPTIMAL POWER ALLOCATION STRUCTURE: THE PURE RELAY CASE

In this section, we will first investigate the structural properties of an optimal A in Section IV-A. Then, we

will study the structural properties of an optimal Q in Section IV-B. Based on these structural properties, we will

reformulate the PO-PR problem in Section IV-C.

A. The Structure of An Optimal Amplification Matrix

For now, we assume that Q is known. To expose the structure of IPR(Q,A), we let H̃rd , σr

σd
HrdA and

H̃sr , 1
σr
HsrQ

1
2 . To study the structural properties of an optimal A, we first need the following result to simplify

IPR(Q,A).

Lemma 1. The achievable rate expression in (6) is equivalent to the following expression:

IPR(Q,A) =
1

2
log2

∣∣∣IMNr + Λ̃sr(IMNr − (IMNr + Ũ†
srH̃

†
rdH̃rdŨsr)

−1)
∣∣∣, (11)

where the real diagonal matrix Λ̃sr ∈ CMNr×MNr and the orthonormal matrix Ũsr ∈ CMNr×MNr are obtained

from the eigenvalue decomposition of H̃srH̃
†
sr, i.e., H̃srH̃

†
sr = ŨsrΛ̃srŨ

†
sr.

Proof: See Appendix B.

Lemma 1 implies that maximizing (6) with respect to A can be equivalently done on (11), which is relatively

easier due to the diagonal structure in (11). More specifically, according to the Hadamard inequality [20], the
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achievable rate in (11) is maximized when the matrix inside the determinant is diagonal. Note that in (11), every

matrix term is already diagonal except the term (IMNr + Ũ†
srH̃

†
rdH̃rdŨsr)

−1. Thus, for the overall matrix to be

diagonal, it suffices that Ũ†
srH̃

†
rdH̃rdŨsr is diagonal. To this end, we have the following sufficient condition for

the diagonality of Ũ†
srH̃

†
rdH̃rdŨsr.

Lemma 2. Ũ†
srH̃

†
rdH̃rdŨsr is diagonal if V†

rdAŨsr is diagonal, where Vrd is the eigenvector matrix for H†
rdHrd

i.e., H†
rdHrd = VrdΛrdV

†
rd.

Proof: To see this, we rewrite Ũ†
srH̃

†
rdH̃rdŨsr in the following form: Ũ†

srH̃
†
rdH̃rdŨsr = (σ2

r/σ
2
d)Ũ

†
srA

†H†
rdHrdAŨsr =

(σ2
r/σ

2
d)Ũ

†
srA

†VrdΛrdV
†
rdAŨsr. Since Λrd is diagonal, in order for Ũ†

srH̃
†
rdH̃rdŨsr to be diagonal, it suffices

for V†
rdAŨsr to be diagonal.

Now, recall that A = Diag{A1, . . . ,AM}. Thus, V†
rdAŨsr can be expanded as

V†
rdAŨsr =

M∑
k=1

(V
[k]
rd )

†AkŨ
[k]
sr , (12)

where V
[k]
rd ∈ CNr×MNr and Ũ

[k]
sr ∈ CNr×MNr represent the submatrices in Vrd and Ũsr starting from the

((k − 1)Nr + 1)-st row to the kNr-th row, respectively, i.e.,

Vrd =


V

[1]
rd

...

V
[M ]
rd

 and Ũsr =


Ũ

[1]
sr

...

Ũ
[M ]
sr

.
Based on (12), we have the first main result in this paper.

Theorem 1. When Q is fixed, the relay amplification matrix Ak at the k-th relay node has the following structure

at optimality:

Ak = ((V
[k]
rd )

†)LIΦk(Ũ
[k]
sr )

RI, k = 1, 2, . . . ,M, (13)

where (·)LI and (·)RI represent the left inverse and the right inverse, respectively; and Φk ∈ RMNr×MNr is real

diagonal.

Theorem 1 is important because, as we shall see later, the diagonal decomposition structure in (13) significantly

simplifies the determinant calculation and allows us to reduce the matrix-based problem into a scalar form. The

proof of Theorem 1 relies on the following key lemma.

Lemma 3. V†
rdAŨsr is diagonal if and only if for all k = 1, . . . ,M , (V[k]

rd )
†AkŨ

[k]
sr is diagonal.

Proof: The “if” part follows immediately from (12). For the “only if” part, Lemma 3 can be proved by

first assuming that not all (V[k]
rd )

†AkŨ
[k]
sr are diagonal, k = 1, . . . ,M . Then, by analyzing a homogeneous linear

equation system associated with V†
rdAŨsr, we can reach a contradiction.

First, notice that since Vrd is orthonormal, any two row vectors selected from V
[i]
rd and V

[j]
rd , i ̸= j, are linearly

independent. Next, suppose that each (V
[k]
rd )

†AkŨ
[k]
sr is possibly non-diagonal. By expanding (12) entry-wise and
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noting that the non-diagonal entry of V†
rdAŨsr is zero (since V†

rdAŨsr is diagonal), we have

Nr∑
i=1

Nr∑
j=1

v
[1]
pi a

[1]
ij ũ

[1]
jq + · · ·+

Nr∑
i=1

Nr∑
j=1

v
[M ]
pi a

[M ]
ij ũ

[M ]
jq = 0, (14)

for all p, q = 1, 2, . . . ,MNr and p ̸= q. In (14), v[i]pi represents the entry in the p-th row and i-th column of the

matrix V
[k]
rd , a[k]ij represents the entry in the i-th row and j-th column of the matrix A

[k]
i , and ũ

[k]
jq represents the

entry in the j-th row and q-th column of the matrix Ũ
[k]
sr . Since there are a total of M2N2

r −MNr such linearly

independent equations in the form of (14) with MN2
r unknowns (i.e., a[k]ij -variables); in order for this homogeneous

linear equation system to have a non-zero solution, the dimension of the null space needs to be greater than zero,

i.e., M2N2
r −MNr < MN2

r . This implies that

Nr <
1

M − 1
. (15)

However, note that in a multi-relay setting we have, M ≥ 2. Also, Nr (i.e., the number of antennas at the relays)

has to be an integer, which implies that the inequality in (15) cannot be true – a contradiction.

Using Lemma 3, we are now ready to prove Theorem 1.

Proof of Theorem 1: Since each (V
[k]
rd )

†AkŨ
[k]
sr term is a diagonal matrix, we let

(V
[k]
rd )

†AkŨ
[k]
sr = Φk, (16)

where Φk, as stated in the theorem, is a diagonal matrix. Since (V
[k]
rd )

† and Ũ
[k]
sr are tall-skinny and short-fat,

there exist left and right inverses for (V[k]
rd )

† and Ũ
[k]
sr , respectively. Then, Eq.(13) simply follows from multiplying

((V
[k]
rd )

†)LI and (Ũ
[k]
sr )RI on the left- and right- hand sides of (16), respectively.

Remark 1. We can see from (13) that Ak contains two parts: (Ũ[k]
sr )RI matching to the eigen-directions of the joint

source-relay channel, and (V
[k]
rd )

LI matching to the eigen-directions of the joint relay-destination channel. When

the direction matching is done, the actual power allocation is completely determined by the diagonal entries in Φk.

We point out that by imposing the individual power constraint, the structure of Ak is drastically different from that

in [18], where all relays are subject to a sum power constraint.

Remark 2. It is worth pointing out that Theorem 1 implies that each relay needs the knowledge of the joint channel

Hsr and Hrd. This means that, although the relays do not share received signals, they do need to share CSI, which

is the price to pay in order to achieve optimal performance. This CSI requirement could potentially impose some

challenges on practical implementations, and limited CSI feedback could be desirable in practice.

B. The Structure of Optimal Source Covariance Matrix

From (11), it can be seen that after choosing an appropriate A, the value of the achievable rate depends on the

diagonal entry in Λ̃sr. Thus, following a similar argument as in [17], [21], it can be shown that an optimal Q

should match with the dominant right singular matrix of Hsr. We state the result in the following proposition and

omit its proof in this paper.
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Proposition 1. The matrix Q has the following structure at optimality: Q = VsrΛV†
sr, where Vsr represents the

right singular matrix of the combined channel matrix Hsr, i.e., Hsr = UsrΣsrV
†
sr, and where Σsr is a diagonal

matrix, and Usr and Vsr are the associated left and right singular matrices, respectively.

C. Problem Reformulation

Since the optimal power allocation for MIMO-CN is determined by the diagonal entries after appropriate

matchings for A and Q are accomplished, the optimal power allocation problem can be simplified to a scalar

form. Here, we first simplify the objective function in (11). After some algebraic manipulation from Theorem 1,

we can obtain that

IPR(Q,A) =
1

2
log2

∣∣∣IMNr + Λ̃sr(IMNr − (IMNr + (17)

σ2
r

σ2
d

Diag
{
λ
(1)
rd (
∑M

i=1 d
(i)
1 )2, . . . , λ

(MNr)
rd (

∑M
i=1 d

(i)
MNr

)2
}
)−1)

∣∣∣
=

1

2

MNr∑
j=1

log2

1 + λ̃
(j)
sr λ

(j)
rd (
∑M

i=1 d
(i)
j )2

λ
(j)
rd (
∑M

i=1 d
(i)
j )2 +

σ2
d

σ2
r

 . (18)

Here, the eigenvalues {λ̃(j)
sr }MNr

j=1 and {λ(j)
rd }

MNr
j=1 are both sorted in non-increasing order. Also, the source power

constraint can be re-written as
Ns∑
i=1

λ̃(i)
sr ≤ PT . (19)

By using the matrix identity Tr(MXNX†) = x†(M ◦ NT )x, where M and N are square matrices; and X is a

diagonal matrix with x on its main diagonal [18], [22], it follows that

Tr(Ai(σ
2
rINr +HsrQH†

sr)A
†
i ) ≤ PR ⇒ d†

iSidi ≤ PR, (20)

where Si is defined as

Si =
[
(((V

[i]
rd)

†)LI)†((V
[i]
rd)

†)LI
]
◦
[
(U[i]

sr)
RI(σ2

rINr +HsrQH†
sr)((U

[i]
sr)

RI)†
]T

∈ CMNr×MNr .

Note that Si is symmetric and positive semidefinite because it is a Hadamard product of two positive semidefinite

matrices.

Putting together all the above transformations and letting δj ,
∑M

i=1 d
(i)
j , we can equivalently write the PO-PR
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problem in the following form:

PO-PR-SCALAR:

Maximize
1

2

MNr∑
j=1

log2

1 + λ̃
(j)
sr λ

(j)
rd δ

2
j

λ
(j)
rd δ

2
j +

σ2
d

σ2
r


subject to

MNr∑
j=1

(Si)jj(d
(i)
j )2 +

MNr∑
j=1

MNr∑
k=1,k ̸=j

(Si)jkd
(i)
j d

(i)
k ≤ PR, i = 1, . . . ,M,

δj −
M∑
i=1

d
(i)
j = 0, j = 1, . . . ,MNr,

Ns∑
i=1

λ̃(i)
sr ≤ PT ,

where the decision variables are δj , d(i)j , and λ̃
(i)
sr , ∀i, j.

Moreover, observe that λ̃srλ
(j)
rd = 0 for j = D + 1, . . . ,MNr, where D , min{rank(H̃sr), rank(Hrd)}.

Therefore, the objective function can be rewritten as 1
2

∑D
j=1 log2

[
1 +

λ̃(j)
sr λ

(j)
rd δ2j

λ
(j)
rd δ2j+

σ2
d

σ2
r

]
. From the discussions regarding

the objective function, it follows that PO-PR-SCALAR can be further simplified into an equivalent problem as

given below:

PO-PR-SIM:

Maximize
1

2

D∑
j=1

log2

1 + λ̃
(j)
sr λ

(j)
rd δ

2
j

λ
(j)
rd δ

2
j +

σ2
d

σ2
r


subject to

MNr∑
j=1

(Si)jj(d
(i)
j )2 +

MNr∑
j=1

MNr∑
k=1,k ̸=j

(Si)jkd
(i)
j d

(i)
k ≤ PR, i = 1, . . . ,M,

δj −
M∑
i=1

d
(i)
j = 0, j = 1, . . . ,MNr,

Ns∑
i=1

λ̃(i)
sr ≤ PT ,

where the decision variables are δj , d(i)j , and λ̃
(i)
sr , ∀i, j.

Remark 3. We note that matrix variables no longer appear in PO-PR-SIM, which significantly simplifies the

formulation and reduces the computational complexity. Note also that PO-PR-SIM is in a mathematical form similar

to that for a single-antenna CN. This suggests that solutions to PO-PR-SIM may be developed by drawing upon

the rich experiences gained for single-antenna CN. Indeed, we will design such a global optimization algorithm to

solve PO-PR-SIM in Section VI.

V. OPTIMAL POWER ALLOCATION STRUCTURE: THE COOPERATIVE RELAY CASE

Comparing CR to PR, the major difference is the presence of the direct link Hsd. In Section V-A, we will first

study the impact of the direct link and what role it plays in the relationship between PR and CR. Based on this,



13

we will investigate the structures of optimal values of A and Q in Section V-B.

A. The Role of the Direct Link Under Cooperative Relay

Recall that we can write the achievable rate under CR as:

ICR(Q,A) =
1

2
log2

∣∣I2Nd
+HQH†R−1

∣∣ , (21)

where the equivalent end-to-end channel gain matrix H and noise power R are defined as

H ,

 H̄sd

Hsd

 and R ,

 R̄ 0

0 σ2
dINd

, (22)

respectively. We can see from (21) that the value of end-to-end achievable rate under CR is determined by the

determinant
∣∣I2Nd

+HQH†R−1
∣∣. To compute the determinant, we substitute (22) into (21). It then follows that∣∣I2Nd
+HQH†R−1

∣∣
=

∣∣∣∣∣∣I2Nd
+

 H̄sd

Hsd

Q[ H̄†
sd H†

sd

] R̄−1 0

0 1
σ2
d
INd

∣∣∣∣∣∣
=

∣∣∣∣∣∣ INd
+ H̄sdQH̄†

sdR̄
−1 1

σ2
d
H̄sdQH†

sd

HsdQH̄†
sdR̄

−1 INd
+ 1

σ2
sd
HsdQH†

sd

∣∣∣∣∣∣ . (23)

Based on the determinant in (23), it can be verified that ICR(Q,A) can be decomposed into two parts as follows:

ICR(Q,A) =
1

2
log2

∣∣∣INd
+ H̄sdQH̄†

sdR̄
−1
∣∣∣︸ ︷︷ ︸

Pure AF relay

+
1

2
log2

∣∣∣∣INd
+

1

σ2
d

Hsd(Q
−1 + H̄†

sdR̄
−1H̄sd)

−1H†
sd

∣∣∣∣︸ ︷︷ ︸
Gain from direct link

. (24)

Comparing (24) with (7), we can see that the first term on the right-hand side of (24) is exactly IPR(Q,A). Thus,

we can conclude that the second term represents the rate gain due to the cooperation from the direct link. The

decomposition in (24) is similar to deriving the mutual information for three-node MIMO AF-relay networks in

[12]. We relegate the details of deriving (24) to Appendix C. Expanding H̄sd and R̄ and noting the block diagonal

structure of A, we have the following result.

Proposition 2. Under CR, the end-to-end achievable data rate gain due to the direct link, denoted by ∆CDL, is

given by

∆CDL =
1

2
log2

∣∣∣∣∣∣∣INd
+

1

σ2
d

Hsd

Q−1 +

(
M∑
i=1

H
[i]
rdAiH

[i]
sr

)†

R̄−1

(
M∑
i=1

H
[i]
rdAiH

[i]
sr

)−1

H†
sd

∣∣∣∣∣∣∣ .
Remark 4. Proposition 2 can also be understood from another angle. It can be seen that as Hsd → 0 (i.e.,

the direct link Hsd gets weaker asymptotically), CDL approaches 0. This means that ICR(Q,A) → IPR(Q,A)

asymptotically, which makes intuitive sense.
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We note that, based on (23), ICR(Q,A) can also be decomposed into two parts as follows:

ICR(Q,A) =
1

2
log2

∣∣∣∣INd
+

1

σ2
d

HsdQH†
sd

∣∣∣∣︸ ︷︷ ︸
Direct link w/o relays

+
1

2
log2

∣∣∣∣∣INd
+ H̄sd

(
Q−1 +

1

σ2
sd

H†
sdHsd

)−1

H̄†
sdR̄

−1

∣∣∣∣∣︸ ︷︷ ︸
Gain from AF relays

. (25)

Upon a closer look at the right-hand side (RHS) of (25), it is readily recognized that the first term is exactly

the MIMO capacity expression for the direct link Hsd when the relays are absent. Thus, we can conclude that the

second term in the summation represents the rate gain due to the cooperation from the AF relays. The derivation

details of the decomposition in (25) is also relegated to Appendix C. After expanding H̄sd and R̄, we have the

following result:

Proposition 3. Under CR, the end-to-end achievable data rate gain due to the AF relay links, denoted by ∆CAF ,

is given by

∆CAF =
1

2
log2

∣∣∣∣∣∣INd
+

(
M∑
i=1

H
[i]
rdAiH

[i]
sr

)(
Q−1 +

1

σ2
d

H†
sdHsd

)−1
(

M∑
i=1

H
[i]
rdAiH

[i]
sr

)†

R̄−1

∣∣∣∣∣∣ .
Remark 5. Similar to Proposition 2, Proposition 3 can also be interpreted in an asymptotic manner. It can be seen

that as Hsd → 0, the capacity of the direct link in (25) approaches 0 and ∆CAF → IPR(Q,A) asymptotically.

B. The Structure of the Optimal Source and Relay Amplification Matrices

From (25), we can see that once Q is known, finding an optimal A is completely determined by maximizing the

second term in (25). Also, comparing the second term in (25) to the expression of IPR(Q,A) in (7), we can see

that they are of the same structure when Q is fixed. This means that the optimal structure of A does not change

under CR. We formally state this result in the following theorem.

Theorem 2. When Q is fixed, the structural property in (13) continues to hold for A under CR. However, Ũ[k]
sr in

(13) needs to be replaced by the left singular matrix of 1
σr
Hsr(Q

−1 + 1
σ2
d
H†

sdHsd)
− 1

2 .

Since A’s optimal structure does not change under CR, the optimal A can be found by solving an optimization

problem similar to PO-PR-SIM. The only difference is that the eigenvalues λ̃
(i)
sr should be replaced by those of

1
σr
Hsr(Q

−1 + 1
σ2
d
H†

sdHsd)
− 1

2 . Thus, we omit the formal statement to avoid repetition.

Compared to the PR case, identifying the optimal structure of Q under CR is slightly more involved. Due to the

first term in (25), we need to simultaneously take the direct link Hsd and the equivalent end-to-end relay channel

H̄sd into consideration when finding the optimal power structure of Q. This means that the optimal structure of Q

depends on the value of A. This is different from the PR case, where the optimal structure of Q is solely dictated

by Hsr.

To determine the optimal power structure of Q under CR, we rewrite the achievable rate expression in (8). It can

be verified that ICR(Q,A) = 1
2 log2

∣∣∣I2Nd
+ ĤQĤ†

∣∣∣, where Ĥ , R− 1
2H. Then, we can see from this expression
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that the cooperative relay network is equivalent to a point-to-point MIMO channel with the channel gain matrix

being Ĥ. Thus, from the classical water-filling result [23], we have the following result:

Proposition 4. The source covariance matrix Q under CR has the following structure at optimality: Q = V̂ΛV̂†,

where V̂ represents the right singular matrix of Ĥ, i.e., Ĥ = ÛΣsrV̂
†, where Σsr is a diagonal matrix, and Û

and V̂ are the associated left and right singular matrices, respectively.

Remark 6. Theorem 2 and Proposition 4 indicate that, even though the channels in the CR case become more

complex, the same matching structure of an optimal A matrix continues to hold. The matrix Q also exhibits a

matching structure at optimality, although the matching has to jointly consider Hsr, Hrd, and Hsd.

VI. OPTIMIZATION ALGORITHM

Based on the structural results in the previous two sections, we now study how to determine an optimal Q and

A. Since Theorem 2 and Proposition 4 say that the optimal structures of A and Q are the same under PR and CR,

it suffices to only consider the design of an optimization algorithm for the PR case.

Recall that PO-PR can be decomposed into an inner subproblem with respect to A where Q is held fixed, and an

outer main program with respect to Q. We first examine the convexity property of the outer subproblem. It can be

seen from PO-PR-SIM that the objective function is concave with respect to the λ̃
(i)
j -variables. Thus, if we know

how to optimize A for each given Q, then an optimal Q can be solved by any standard convex optimization tools.

Therefore, we would only focus on the inner subproblem in the remainder of this section.

A. Convexity Property of PO-PR-SIM

For convenience, we repeat the inner subproblem of PO-PR-SIM below.

PO-PR-SIM:

Maximize
1

2

D∑
j=1

log2

1 + λ̃
(j)
sr λ

(j)
rd δ

2
j

λ
(j)
rd δ

2
j +

σ2
d

σ2
r


subject to

MNr∑
j=1

(Si)jj(d
(i)
j )2 +

MNr∑
j=1

MNr∑
k=1,k ̸=j

(Si)jkd
(i)
j d

(i)
k ≤ PR, i = 1, 2, . . . ,M

δj −
M∑
i=1

d
(i)
j = 0, j = 1, 2, . . . , Nr.

To solve the inner subproblem (i.e., with λ̃
(j)
sr being fixed), we again examine its convexity property first. We note

that in PO-PR-SIM, the second constraint is linear. The first constraint is in a Schur product form involving a

principal of a positive semidefinite matrix, which means it’s convex as well. Thus, the problem is a convex program

if its objective is concave. However, the objective function of PO-PR-SIM can be written as a difference of two

concave functions:
1

2

D∑
j=1

log2

(
(1 + λ̃(j)

sr )λ
(j)
rd δ

2
j +

σ2
d

σ2
r

)
− 1

2

D∑
j=1

log2

(
λ
(j)
rd δ

2
j +

σ2
d

σ2
r

)
,
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which implies that it is not concave.

In fact, by checking the second order condition (i.e., the positive definiteness of the Hessian matrix) of the objective

function of PO-PR-SIM, we can show that PO-PR-SIM is convex when the diagonal elements d
(i)
j (constrained by

relay power PR) and channels Hsr and Hrd satisfy the following conditions:(
M∑
i=1

d
(i)
j

)2

≥ σ2
d

6λ
(j)
rd σ

2
c


√√√√( λ̃

(j)
sr + 2

λ̃
(j)
sr + 1

)2

+

(
12

λ̃
(j)
sr + 1

)
−

(
λ̃
(j)
sr + 2

λ̃
(j)
sr + 1

) , j = 1, . . . , D. (26)

The derivation of (26) is similar to that in [18] and is thus omitted for brevity. By observing (26), we can see that

as λ̃
(j)
sr → ∞ or λ(j)

rd → ∞, the RHS approaches 0. Therefore, we have the following result.

Proposition 5. The threshold value on
(∑M

i=1 d
(i)
j

)2
approaches to zero as λ̃

(j)
sr → ∞ or λ

(j)
rd → ∞.

Remark 7. The above proposition implies that it is easier for PO-PR-SIM to be convex when λ̃
(j)
sr or λ

(j)
rd is

relatively large. Physically, λ̃(j)
sr and λ

(j)
rd represent the quality of the source-relay and relay-destination channels.

Proposition 5 says that PO-PR-SIM is more likely to be convex if the channels Hsr and Hrd are strong.

Due to the nonconvexity of PO-PR-SIM, designing algorithms to determine its global optimal solution remains

challenging even though PO-PR-SIM is in scalar form. Rather than settling with heuristic or local optimization

algorithms, we propose a global optimization approach based on the branch-and-bound global optimization method

coupled with a convex hull relaxation (BB/CHR) specifically tailored to PO-PR-SIM, which exploits the special

structure in PO-PR-SIM. To the best of our knowledge, our work is the first that considers solving nonconvex

MIMO-CN problems using a global optimization approach.

B. A Global Optimization Approach

Our proposed BB/CHR approach starts by further reformulating the inner PO-PR-SIM problem. Before doing

so, we briefly describe the basic idea of our general BB/CHR framework. Then, we will show how to identify the

special structure in PO-PR-SIM to facilitate the derivation of an appropriate CHR.

BB/CHR: Basic Idea. For a general nonconvex optimization problem, conventional convex programming

methods (e.g., interior methods [24]) can at best yield local optimal solutions. In contrast, our proposed BB/CHR

procedure in this paper is a powerful global optimization approach that guarantees finding a global optimal solution

[25]–[27]. The basic idea of BB/CHR is that we can construct a higher dimensional convex-hull relaxation (CHR)

for the original nonconvex problem, which can be used to efficiently compute a global upper bound, UB, for the

original nonconvex problem. The solution to the CHR is either a feasible solution to the original nonconvex problem

or, if not feasible, can be used as a starting point for a local search algorithm to find a feasible solution to the

original nonconvex problem. This feasible solution will then serve to provide a global lower bound, LB, and an

incumbent solution to the original nonconvex problem. However, it is worth pointing out that local search is not

necessary in this paper since the CHR for our problem is still subject to the same power constraint of the original

problem. As a result, solving the CP relaxation of our problem still gives us a feasible d
(i)
j -solution to the original
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Fig. 5. Illustration of branch-and-bound solution procedure.

problem. This will become clearer later after we introduce the CHR. The proposed branch-and-bound process then

proceeds by tightening UB and LB, and terminates when LB ≥ (1− ϵ)UB is satisfied, where ϵ is some desired

termination criterion. There is a formal proof that the general BB process converges to a global optimal solution

as long as the partitioning intervals are compact (see, e.g., [25]–[27]), which obviously holds in our PO-PR-SIM.

The detailed branch-and-bound process works as follows. First, we substitute single new variables to represent

terms causing nonconvexity in the problem. Define the relaxation error for a nonconvex term in the problem as

the difference between the value of this term and the value of its corresponding new variable in the relaxation

solution. If such relaxation errors are significant, then the lower bound LB can be far away from the upper bound

UB. To close this gap, we must construct a tight CHR, i.e., having smaller relaxation errors. This can be achieved,

as described below, by further narrowing the bounding interval length of the partitioning variables (more on this

later). Specifically, the branch-and-bound algorithm selects a partitioning variable having the maximum relaxation

error and divides its bounding interval into two intervals by cutting it at the relaxation solution. Then the original

problem having the greatest upper bound UB1 = UB (denoted as Problem P1 as shown in Fig. 5(a)) is divided

into two new subproblems (denoted as Problems P2 and P3 as shown in Fig. 5(b)). Again, we solve the CHR

for these two new problems, and thereby obtain LB2 and UB2 for P2, and LB3 and UB3 for P3. Since the

relaxations for P2 and P3 are both tighter than that in Problem P1, we must have max{UB2, UB3} ≤ UB1. The

upper bound of the original problem is updated from UB = UB1 to UB = max{UB2, UB3} and the lower

bound of the original problem is updated from LB to LB = max{LB,LB2, LB3}, with the incumbent solution

being updated in case an improvement results. As a result, we now have a smaller gap between UB and LB. If

LB ≥ (1 − ϵ)UB, the branch-and-bound process is terminated. Otherwise, we choose a subproblem that has the

maximum upper bound (Problem P3 in Fig. 5(b)) and further perform a partitioning for this problem as above. In

the next iteration, as shown in Fig. 5(c), P3 is partitioned into P4 and P5. Upon solving the CHR for P4 and P5,

respectively, we have two sets of upper and lower bounds (LB4, UB4) and (LB5, UB5). Notice that in Problem P5

in the illustration in Fig. 5(c), (1− ϵ)UB5 < LB. This means that further partition on P5 is unnecessary. As such,

we can discard P5 from the problem list. After we finish partitioning P3, the global upper bound would be changed
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Algorithm 1 BB/CHR Solution Procedure
Initialization:

1. Let optimal solution ψ∗ = ∅. The initial lower bound LB = −∞.

2. Determine partitioning variables (variables associated with CHR) and derive their initial bounding intervals.

3. Let the initial problem list contain only the original problem, denoted by P1.

4. Modify constraints for partitioning variables to build a CHR. Denote the solution to CHR as ψ̂1 and its objective value as the upper bound

UB1.

Main Loop:

5. Select problem Pz that has the largest upper bound among all problems in the problem list.

6. Find, if necessary, a feasible solution ψz via a local search algorithm for Problem Pz . Denote the objective value of ψz by LBz .

7. If LBz > LB then let ψ∗ = ψz and LB = LBz . If LB ≥ (1− ϵ)UB then stop with the (1− ϵ)-optimal solution ψ∗; else, remove all

problems P
z
′ having (1− ϵ)UB

z
′ ≤ LB from the problem list.

8. Compute relaxation error for each partitioning variable.

9. Select a partitioning variable having the maximum relaxation error and divide its bounding interval into two new intervals by partitioning

at its value in ψ̂z .

10. Remove the selected problem Pz from the problem list, construct two new problems Pz1 and Pz2 based on the two partitioned intervals.

11. Compute two new upper bounds UBz1 and UBz2 by solving the CHR of Pz1 and Pz2, respectively.

12. If LB < (1− ϵ)UBz1 then add problem Pz1 to the problem list. If LB < (1− ϵ)UBz2 then add problem Pz2 to the problem list.

13. If the problem list is empty, stop with the (1− ϵ)-optimal solution ψ∗. Otherwise, go to Step 5 again.

to UB = max{UB2, UB4, UB5}, which is UB2 in this case. The general framework of BB/CHR is summarized

in Algorithm 1.

In the remainder of this section, we will develop the key components in the BB/CHR framework, which are

problem-specific.

Objective function reformulation. Observe that in PO-PR-SIM, nonconvexity only appears in the objective

function. Therefore, we start by rewriting the objective function of the inner problem as

1

2

D∑
j=1

log2

[
1 +

λ̃
(j)
sr λ

(j)
rd gj

λ
(j)
rd gj + σ2

]
, (27)

where σ2 , σ2
d

σ2
r

and gj , δ2j ≥ 0. Note that, although not obvious, (27) is convex with respect to gj ≥ 0,

∀j = 1, . . . , N . This can be readily verified by checking the second order condition of (27). With this change of

variables, the inner problem can be written as follows:

PO-PR-SIM:

Maximize
1

2

D∑
j=1

log2

[
1 +

λ̃
(j)
sr λ

(j)
rd gj

λ
(j)
rd gj + σ2

]

subject to gj = δ2j ∀j = 1, . . . , D

MNr∑
j=1

(Si)jj(d
(i)
j )2 +

MNr∑
j=1

MNr∑
k=1,k ̸=j

(Si)jkd
(i)
j d

(i)
k ≤ PR, ∀i = 1, . . . ,M

δj −
M∑
i=1

d
(i)
j = 0, ∀j = 1, . . . , D.
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Although this reformulated problem remains nonconvex (since the new constraints gj = δ2j , ∀j = 1, . . . , Nr are

nonconvex), we have shifted the nonconvex part from the objective function to the constraints. As we shall see

immediately, with this reformulation, we can apply a powerful technique called the Reformulation-Linearization

Technique (RLT) [25], [26].

Convexifying the quadratic equality constraints using RLT. The basic idea in our reformulation is to

approximate the quadratic equality constraint gj = δ2j using its convex hull relaxation, which by definition is

the tightest possible convex relaxation. We first observe that if we replace gj = δ2j by gj ≥ δ2j , then the latter is

convex. However, since PO-PR-SIM is a maximization problem in gj , we need an additional constraint to bound

gj from above because otherwise, PO-PR-SIM will be unbounded. To this end, we can apply RLT as follows. First,

we note that

δLj ≤ δj ≤ δUj , (28)

where δLj and δUj are some appropriate lower and upper bounds for δj , respectively (more on the appropriate values

of δLj and δUj later). From (28), we derive the following so-called bounding-factor constraint:

(δj − δLj )(δj − δUj ) ≤ 0, (29)

which, upon using the substitution gj = δ2j , yields:

gj − (δLj + δUj )δj + δLj δ
U
j ≤ 0. (30)

Observe now that the original non-convex constraint gj = δ2j has been relaxed into two constraints in gj and δj :

δ2j − gj ≤ 0 ∀j = 1, . . . , D, (31)

gj − (δLj + δUj )δj + δLj δ
U
j ≤ 0 ∀j = 1, . . . , D. (32)

Geometrically, the reformulated constraint in (31) and the RLT constraint in (32) represent the convex hull of the

set defined by gj = δ2j , δj ∈ [δLj , δUj ], as shown in Fig. 6. When the bounds δLj and δUj are far from each other

(i.e., the interval [δLj , δ
U
j ] is large), the convex hull relaxation may not be a tight approximation of the quadratic

curve. However, as δLj and δUj get tighter, as shown in Fig. 7, we can see that the convex hull becomes an excellent

approximation of the quadratic curve.



20

4

3

2

1

0 1 2−1−2

gj

δj

δU
jδL

j

Fig. 6. The quadratic curve gj = δ2j is approximated by a

polyhedron formed by the linear RLT constraints.
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Fig. 7. The quadratic curve gj = δ2j can be well approximated

by the linear RLT polyhedron when the interval [δLj , δ
U
j ] is small.

After the above convex relaxation, we have the following CHR of inner problem:

R-PO-PR-SIM:

Maximize
1

2

D∑
j=1

log2

[
1 +

λ̃
(j)
sr λ

(j)
rd gj

λ
(j)
rd gj + σ2

]

subject to δ2j − gj ≤ 0 ∀j = 1, . . . , D

gj − (δLj + δUj )δj + δLj δ
U
j ≤ 0 ∀j = 1, . . . , D

MNr∑
j=1

(Si)jj(d
(i)
j )2 +

MNr∑
j=1

MNr∑
k=1,k ̸=j

(Si)jkd
(i)
j d

(i)
k ≤ PR, ∀i = 1, . . . ,M

δj −
M∑
i=1

d
(i)
j = 0, ∀j = 1, . . . , D.

One important remark on R-PO-PR-SIM is in order: if PO-PR-SIM happens to be a convex problem (see

Proposition 5), the branch-and-bound process in our proposed BB/CHR will also converge in one step. This is

due to the use of convex hull relaxation, which automatically yields the optimal solution to the original problem.

This means that our BB/CHR method does not incur any extra cost if R-PO-PR-SIM is well-conditioned. This

interesting fact will also be seen in numerical results presented later.

Partitioning variables and their upper and lower bounds The partitioning variables in the branch-and-bound

(BB) process are those that are involved in nonconvex terms, for which we have therefore defined new variables,

and whose bounding intervals will need to be partitioned during the branch-and-bound algorithm [25]–[27]. In

R-PO-PR-SIM, these partitioning variables are δj , j = 1, . . . , D. For these partitioning variables, we need to derive

tight upper and lower bounds for δUj and δLj , respectively.

To this end, we let S̄
(j)
i ∈ R(MNr−1)×MNr be the matrix obtained by taking the real parts of Si and then

deleting the j-th row. Then, let v̄(j)
i = [v̄

(j)
i,1 · · · v̄

(j)
i,MNr

]T be the right singular vector corresponding to the zero

singular value of S̄
(j)
i . Further, define v̂

(j)
i as the scaled version of a right singular vector of v̄

(j)
i obtained by
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v̂
(j)
i = 1

v̄
(j)
i,1

v̄
(j)
i =

[
1

v̄
(j)
i,2

v̄
(j)
i,1

· · · v̄
(j)
i,MNr

v̄
(j)
i,1

]T
. Then, we have the following result:

Lemma 4. The constraint
∑MNr

j=1 (Si)jj(d
(i)
j )2 +

∑MNr

j=1

∑MNr

k=1,k ̸=j(Si)jkd
(i)
j d

(i)
k ≤ PR implies the following

inequality for each d
(i)
j :

|d(i)j | ≤
√

PR

(v̂
(j)
i )†Siv̂

(j)
i

, ∀i = 1, . . . ,M, j = 1, . . . ,MNr. (33)

Lemma 4 can be proved by considering the following two optimization problems:

Maximize d
(i)
j

subject to
∑MNr

j=1 (Si)jj(d
(i)
j )2 +

∑MNr

j=1

∑MNr

k=1,k ̸=j(Si)jkd
(i)
j d

(i)
k ≤ PR.

(34)

and
Minimize d

(i)
j

subject to
∑MNr

j=1 (Si)jj(d
(i)
j )2 +

∑MNr

j=1

∑MNr

k=1,k ̸=j(Si)jkd
(i)
j d

(i)
k ≤ PR.

(35)

Since these two optimization problems are convex and the Slater condition obviously holds, the KKT optimality

conditions are both necessary and sufficient for Problems (34) and (35) [24]. Then, the result in (33) follows from

analyzing the KKT system of (34) and (35). We relegate the proof details of Lemma 4 to Appendix D.

Next, observe that δUj = max δj = max
∑M

i=1 d
(i)
j =

∑M
i=1 max d

(i)
j and δLj = min δj = min

∑M
i=1 d

(i)
j =∑M

i=1 min d
(i)
j . Then, from Lemma 4, the following result is straightforward:

Lemma 5. The upper and lower bounds of δj can be respectively computed as

δLj = −
M∑
i=1

√
PR

(v̂
(j)
i )†Siv̂

(j)
i

, and δUj =
M∑
i=1

√
PR

(v̂
(j)
i )†Siv̂

(j)
i

. (36)

C. Numerical Results

We present some numerical results to show the efficacy of our proposed BB/CHR method. First, we consider a

network shown in Fig. 8, which satisfies the convexity condition in (26). In this example, the source node is N3 and

the destination node is N4. Each node in the network is equipped with four antennas. The transmit power levels are

chosen as PT = PR = 1W, which are large enough so that the convexity condition (26) is satisfied. The path-loss

index is chosen to be 3. The BB termination criterion ϵ is 10−6. The BB convergence process of the global upper

bound and the global lower bound (the incumbent optimal and feasible solution) is shown in Table I. It can be seen

that the gap between the global upper and lower bounds is already negligible after solving the convex relaxation

R-PO-PR-SIM for the original problem, meaning that the branch-and-bound process converges in one step for this

case. This confirms our expectation that BB/CHR does not incur any extra cost when the original problem happens

to be convex.

On the other hand, consider another network example as shown in Fig. 9. In this example, the source node is

N1 and the destination node is N4. Again, each node in the network is equipped with four antennas. However, the

transmit power levels are chosen as PT = PR = 100 mW, which are weak enough so that the convexity condition

in (26) is violated. The path-loss index is again chosen to be 3 and the BB termination criterion ϵ is set to 10−6 as
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Fig. 8. A four-relay network example satisfying the convexity

condition in (26).

TABLE I

CONVERGENCE PROCESS OF THE GLOBAL UPPER AND LOWER

BOUNDS OF THE OBJECTIVE VALUE (IN BITS/S/HZ) WHEN

PO-PR-SIM IS CONVEX.

No. Iterations Global upper bound Global lower bound

1 16.9597 16.9595
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Fig. 9. A four-relay network example violating the convexity

condition in (26).
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Fig. 10. The convergence process of BB/CHR when PO-PR-SIM

is nonconvex.

before. The BB convergence process of the global upper bound and the global lower bound (the incumbent optimal

and feasible solution) is shown in Fig. 10. It can be seen that it only takes 20 iterations of branch-and-bound to find

a global optimal solution. This shows the efficacy and efficiency of our proposed BB/CHR method for nonconvex

cases of PO-PR-SIM.

Next, we study the scaling of iterations as the number of relay nodes and the number of antennas per node grow.

In general, the number of branchings in the branch-and-bound framework depends on the number of partitioning

variables, which is the number of δ-variables in this paper. From previous discussions on BB/CHR, we can see

that the number of δ-variables is determined by the effective degree of freedom D, which is in turn determined

by the number of antennas per node. Thus, we expect that the number of antennas should have a more direct

impact on the number of branching iterations than the number of relay nodes does. We first fix the number of relay

nodes to 4 and vary the number of antennas per node from 2 to 6, which is the practical range of the number

of antennas in real systems. The transmit power of each node is set to 100 mW and all other simulation settings
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Fig. 11. The scaling of the number of branching iterations with respect to the number of antennas per node.
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Fig. 12. The achievable rate comparison between equal power

allocation and optimal power allocation as the number of antennas

per node changes from 2 to 6.
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Fig. 13. The achievable rate comparison between equal power

allocation and optimal power allocation as the number of relay

nodes changes from 2 to 5.

remain the same as in the previous two examples. In this case, the scaling of the number of branch-and-bound

iterations is shown in Fig. 11 (in log-scale). Each data point in Fig. 11 is averaged over 50 randomly generated

network examples. It can seen that the averaged number of iterations changes from 21 to 3090, which increases

roughly exponentially. This confirms that the number of branching iterations depends on the number of antennas per

node. The exponential increase of iterations is an expected phenomenon when searching for global optimal solutions

for NP-hard nonconvex optimization problems. However, we note that for the practical numbers of antennas, the

branch-and-bound process converges reasonably fast. On the other hand, we also evaluate the scaling of the number

of branching iterations with respect to the number of relay nodes. Again, for each setting, the result is averaged

over 50 randomly generated network examples. We fix the antenna per node to be 2 and vary the number of relays

from 2 to 6. The results obtained are 16, 25, 20, 18, and 19, respectively, which stay roughly in the same range

and are not sensitive to the number of relays.

It is also interesting to study how much rate gain can be obtained through an optimal power allocation. In
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Fig. 14. The comparison between BB/CHR algorithm and the

exhaustive search method.
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Fig. 15. The achievable rate comparison between equal power

allocation and optimal power allocation.

Fig. 12, we compare the achievable rates under optimal power allocation and equal power allocation as the number

of antennas per node increases. It can be seen that the achievable rate gain is significant after an optimal power

allocation. For these five settings, the average ratios between an equal power allocation and an optimal power

allocation are 0.2849, 0.3914, 0.3171, 0.3699, and 0.3891, respectively. In other words, the achievable rates under

equal power allocation are no more than 40% of that of the optimal power allocation. In Fig. 13, we compare the

achievable rates under optimal power allocation and equal power allocation as the number of relay nodes increases.

Again, we can see that the achievable rate gain is significant after optimal power allocation. For these four settings,

the average ratios between equal power allocation and optimal power allocations are 0.2154, 0.1173, 0.0586, and

0.0419. respectively. We note that, after optimal power allocation, the achievable rates increases as the number

of relay nodes grows. However, under a simple equal power allocation scheme, the achievable rate performance

actually decreases. This highlights the importance of power allocation optimization in multi-relay MIMO-CN.

Next, we compare the achievable rates between branch-and-bound and exhaustive search to verify that the branch-

and-bound indeed achieves a global optimal solution. Since exhaustive search quickly becomes intractable as the

problem sizes gets larger, we choose a two-relay network with two antennas per node as our base setting for

exhaustive search. The exhaustive search is conducted as follows. We then quantize each interval and test all

possible combinations of quantized values of δj . The combination with the largest objective value is recorded. We

tested 50 randomly generated network examples. The results are shown in Fig. 14, where we normalize the solutions

of the BB/CHR with respect to those of the exhaustive search. It can be seen that the normalized ratios are close to

one in all cases. Thus, we can conclude that, within the accuracy of numerical computation, the BB/CHR algorithm

achieves a global optimal solution.

Finally, since the capacity of multi-relay cooperative channel remains an open problem, it is instructive to study

the maximum achievable rate of AF-based cooperative schemes compared with a capacity upper bound of the

cooperative relay network. Here, we use the minimum cut-set bound as a capacity upper bound (i.e., the minimum

of the MIMO broadcast channel formed by the source-relay links and the MIMO multiple access channel formed by
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the relay-destination links). We tested 50 randomly generated network examples with four relays and four antennas.

The results are shown in Fig. 15, where we normalize the results of the AF-based cooperative scheme with respect

to the upper bound. We can see from Fig. 15 that most of the normalized results fall in the range between 60%

and 80%. The mean of these 50 examples are 73.9%, implying that, on average, the AF-based cooperative scheme

achieves at least 73.9% of the true capacity in these 50 examples.

VII. CONCLUSION

In this paper, we have investigated the structural properties of optimal power allocation in MIMO-CN and

constructed a tractable optimization framework that is amenable for networking analysis. Our contributions include

generalizing the matching result under the basic three-node setting to the multi-relay setting, for which the relay

power allocation has been heretofore unknown. We also quantified the performance gain due to cooperative relay

and established the connection between cooperative relay and pure relay. Based on the derived structural insights,

we reduced the MIMO-CN rate maximization problem to an equivalent scalar form, which allowed us to develop

an efficient global optimization algorithm by using branch-and-bound coupled with a custom designed convex hull

relaxation for the simplified problem. Our results in this paper offer important analytical tools and insights to fully

exploit the potential of AF-based MIMO-CN with multiple relay nodes. More importantly, our results enable future

large-scale cooperative network research to go beyond the basic three-node relay setting.

APPENDIX A

COMPARISON BETWEEN AF AND DF UNDER THE MULTI-RELAY SETTING

In this appendix, we compare the end-to-end achievable rate performance between AF and DF under the multi-

relay setting as shown in Fig. 2. For simplicity, we do not consider fading in this example. As shown in Fig. 2,

the source node S wants to communicate with the destination node D, possibly via the help of M parallel relay

nodes R1, R2, ..., RM . All communications share the same frequency band. Due to self-interference, the relay nodes

cannot send and receive at the same time. Thus, a unit time-frame is divided into two time slots and the relay nodes

operate in half-duplex mode.

In both AF and DF, we consider pure relay (PR) and cooperative relay (CR) paradigms. Note that in Fig. 2, since

there are M copies of the same message available from the relays, the destination can combine them to increase

the received SNR. Here, we assume that the destination employs maximum-ratio-combining (MRC) to maximize

the received SNR.

A. Pure Relay (PR)

In PR with MRC, the end-to-end mutual information under AF can be computed as

IPR
AF =

1

2
log2

(
1 +

M∑
i=1

SNRsriSNRrid

1 + SNRsri + SNRrid

)
, (37)
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where SNRsri and SNRrid represent the signal-to-noise ratios for the source-ith relay and ith relay-destination

links, respectively.

On the other hand, the end-to-end mutual information of DF under PR can be written as

IPR
DF = min

{
min

i=1,...,M

{
1

2
log2 (1 + SNRsri)

}
,
1

2
log2

(
1 +

M∑
i=1

SNRrid

)}
. (38)

From (37) and (38), it is easy to see that the comparison between IPR
AF and ICC

AF depends on the relationship

between the effective SNRs
∑M

i=1

SNRsri
SNRrid

1+SNRsri
+SNRrid

and min{SNRsr1 , . . . ,SNRsrM ,
∑M

i=1 SNRrid}. However, the

relationship between
∑M

i=1

SNRsri
SNRrid

1+SNRsri
+SNRrid

and min{SNRsr1 , . . . ,SNRsrM ,
∑M

i=1 SNRrid} is indefinite. This can

be shown by the following simple numerical example:

Example A.1. Consider a homogeneous network where SNRsri = SNRrid = 1 for all i = 1, . . . ,M . It follows

from (37) and (38) that the effective SNR for AF is M
3 and the effective SNR for DF remains 1. That is, as the

number of relays increases, the effective SNR under AF scales linearly, while the effective SNR under DF is held

fixed. In this case, it is clear that if M > 3, AF outperforms DF. Otherwise, if M ≤ 3, AF has no advantage over

DF.

B. Cooperative Relay (CR)

Under CR with MRC, the destination node can further coherently combine the signal from the direct link with

the signals from the relays. Thus, we have the end-to-end mutual information under AF as

ICR
AF =

1

2
log2

(
1 + SNRsd +

M∑
i=1

SNRsri × SNRrid

SNRsri + SNRrid + 1

)
. (39)

On the other hand, the end-to-end mutual information of DF under CR can be written as

ICR
DF = min

{
min

i=1,...,M

{
1

2
log2 (1 + SNRsri)

}
,
1

2
log2

(
1 + SNRsd +

M∑
i=1

SNRrid

)}
. (40)

Again, we can see that the comparison between ICR
AF and ICR

DF depends on the relationship between the effective

SNRs SNRsd+
∑M

i=1

SNRsri
×SNRrid

SNRsri
+SNRrid

+1 and min{SNRsr1 , . . . ,SNRsrM ,SNRsd+
∑M

i=1 SNRrid}. Similar to PR, the

relationship between these two effective SNRs is indefinite, as evidenced by the following example:

Example A.2. Consider a homogeneous network where SNRsri = SNRrid = 1 for all i = 1, . . . ,M , and SNRsd =

1
3 . It follows that the effective SNR for AF is M+1

3 and the effective SNR for DF remains 1. Thus, as the number

of relays increases, the effective SNR under AF scales linearly, while the effective SNR under DF is held fixed. In

this case, it is clear that if M > 2, AF outperforms DF. Otherwise, if M ≤ 2, AF has no advantage over DF.

APPENDIX B

PROOF OF LEMMA 1

The result in Lemma 1 was also used in [18] but without proof. Since this result is non-obvious, we provide a

proof of this lemma to make this paper self-contained. Recall that H̃rd , σr

σd
HrdA and H̃sr , 1

σr
HsrQ

1
2 . Thus,
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we can rewrite the achievable rate expression in (6) as

IPR =
1

2
log2

∣∣∣INd
+ H̃rdH̃srH̃

†
srH̃

†
rd(INd

+ H̃rdH̃
†
rd)

−1
∣∣∣

=
1

2
log2

∣∣∣IMNr + H̃srH̃
†
srH̃

†
rd(INd

+ H̃rdH̃
†
rd)

−1H̃rd

∣∣∣
=

1

2
log2

∣∣∣IMNr + H̃srH̃
†
sr(IMNr − (IMNr + H̃†

rdH̃rd)
−1)
∣∣∣ ,

where the second equality follows from |I +MN| = |I +NM| and the third equality follows from the fact that

M(I+NM)−1N = I− (I+MN)−1, and where the identities I are of conformable dimensions.

Using the eigenvalue decomposition of H̃srH̃
†
sr as stated in the lemma (i.e., H̃srH̃

†
sr = ŨsrΛ̃srH̃

†
sr), we have∣∣∣IMNr + H̃srH̃

†
sr(IMNr − (IMNr + H̃†

rdH̃rd)
−1)
∣∣∣

=
∣∣∣IMNr + ŨsrΛ̃srŨ

†
sr(IMNr − (IMNr + H̃†

rdH̃rd)
−1)
∣∣∣

(a)
=
∣∣∣IMNr

+ Λ̃srŨ
†
sr(IMNr

− (IMNr
+ H̃†

rdH̃rd)
−1)Ũsr

∣∣∣
=
∣∣∣IMNr + Λ̃sr(IMNr − Ũ†

sr(IMNr + H̃†
rdH̃rd)

−1Ũsr)
∣∣∣

(b)
=
∣∣∣IMNr + Λ̃sr(IMNr − Ũ−1

sr (IMNr + H̃†
rdH̃rd)

−1(Ũ†
sr)

−1)
∣∣∣

=
∣∣∣IMNr + Λ̃sr(IMNr − (Ũ†

sr(IMNr + H̃†
rdH̃rd)Ũsr)

−1)
∣∣∣

=
∣∣∣IMNr + Λ̃sr(IMNr − (IMNr + Ũ†

srH̃
†
rdH̃rdŨsr)

−1)
∣∣∣ .

In the above derivation, (a) again follows from |I+MN| = |I+NM| and (b) exploits the fact Ũsr is unitary so

that Ũ†
sr = Ũ−1

sr . Note that the last expression is exactly the same as that in the log function stated in the lemma.

APPENDIX C

DECOMPOSITIONS OF ICR(Q,A)

To derive the two decompositions in (24) and (25), we first need the following identities for partitioned matrices

[22]: ∣∣∣∣∣∣ X Y

U V

∣∣∣∣∣∣ = |X||V −UX−1Y| = |V||X−YV−1U|, (41)

where all matrices to be inverted are non-singular and all submatrices are of appropriate dimensions so that the

multiplications are well-defined.

To derive the first decomposition in (24), we apply the first identity in (41) to (23). After rearranging and factoring

out common terms, we obtain∣∣I2Nd
+HQH†R−1

∣∣ = ∣∣∣INd
+ H̄sdQH̄†

sdR̄
−1
∣∣∣ ∣∣∣INd

+
1

σ2
d

×

HsdQ
(
INd

− H̄†
sdR̄

−1
(
INd

+ H̄sdQH̄†
sdR̄

−1
)
H̄sdQ

)
H†

sd

∣∣∣ .
To further simplify the above expression, we employ the celebrated Sherman-Woodbury-Morrison matrix inversion

lemma: (X + YZ)−1 = X−1 − X−1Y(I + ZX−1Y)−1ZX−1. By recognizing X = INd
, Y = H̄†

sdR̄
−1, and
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Z = H̄sdQ and applying the matrix inversion lemma reversely, we have∣∣I2Nd
+HQH†R−1

∣∣ = ∣∣∣INd
+ H̄sdQH̄†

sdR̄
−1
∣∣∣×∣∣∣∣INd

+
1

σ2
d

HsdQ
(
INs + H̄†

sdR
−1H̄sdQ

)−1

H†
sd

∣∣∣∣
=
∣∣∣INd

+ H̄sdQH̄†
sdR̄

−1
∣∣∣×∣∣∣∣INd

+
1

σ2
d

Hsd

(
Q−1 + H̄†

sdR
−1H̄sd

)−1

H†
sd

∣∣∣∣ . (42)

Then, the decomposition in (24) follows from taking the log of both sides of (42).

To derive the decomposition in (25), we apply the second identity in (41) to (23). Similarly, by rearranging and

factoring out common terms, we obtain∣∣I2Nd
+HQH†R−1

∣∣ = ∣∣∣∣INd
+

1

σ2
d

HsdQH†
sd

∣∣∣∣
∣∣∣∣∣INd

+ H̄sdQ(
INs −

1

σ2
d

H†
sd

(
INd

+
1

σ2
d

HsdQH†
sd

)−1

HsdQ

)
H̄†

sdR̄
−1

∣∣∣∣∣ .
Again, by recognizing X = INd

, Y = 1
σ2
sd
H†

sd, and Z = HsdQ and applying the matrix inversion lemma reversely,

we have ∣∣I2Nd
+HQH†R−1

∣∣ = ∣∣∣∣INd
+

1

σ2
d

HsdQH†
sd

∣∣∣∣×∣∣∣∣∣INd
+ H̄sdQ

(
INs +

1

σ2
d

H†
sdHsdQ

)−1

H̄†
sdR̄

−1

∣∣∣∣∣
=

∣∣∣∣INd
+

1

σ2
d

HsdQH†
sd

∣∣∣∣×∣∣∣∣∣INd
+ H̄sd

(
Q−1 +

1

σ2
d

H†
sdHsd

)−1

H̄†
sdR̄

−1

∣∣∣∣∣ . (43)

Then, the decomposition in (25) follows from taking the log of both sides of (43).

APPENDIX D

PROOF OF LEMMA 4

Due to the almost identical structure of Problems (34) and (35), we only focus on Problem (34), i.e., deriving the

maximal value of d(i)j . The proof for the minimal value is similar and is omitted here for brevity (in fact, the proof

is identical due to exactly the same KKT systems of Problems (34) and (35)). To prove the result in Lemma 4,

we first note that Problem (34) is convex and satisfies Slater’s interiority condition [24]. Thus, the KKT optimality

conditions are both necessary and sufficient for this problem.

Since Problem (34) is symmetric with respect to all j, without loss of generality, let us consider max d
(i)
1 in

Problem (34). For notational convenience, we omit the index i in the rest of the proof. Introducing a dual variable
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u ≥ 0 for the constraint in (34), the Lagrangian of (34) can be written as

L(d1, . . . , dMNr , u) = d1 + u

PR −
MNr∑
j=1

(S)jjd
2
j −

MNr∑
j=2

j−1∑
k=1

2Re ((S)jk)djdk

 , (44)

where the Re (·) operation means taking the real part. By KKT conditions, we have

∂

∂d1
L(d1, . . . , dMNr , u) = 1− u

MNr∑
j=1

2Re ((S)1j)dj = 0, (45)

∂

∂dj
L(d1, . . . , dMNr , u) = −u

MNr∑
k=1

2Re ((S)jk)dk = 0, j = 2, . . . ,MNr. (46)

From (45), we have u = 1∑MNr
j=1 2Re ((S)1j)dj

̸= 0. Thus, from (46), we have
∑MNr

k=1 2Re ((S)jk)dk = 0, j =

2, . . . ,MNr, i.e., a homogeneous linear equation system S̄(1)d = 0, where

S̄(1) ,


Re ((S)21) Re ((S)22) · · · Re ((S)2,MNr )

Re ((S)31) Re ((S)32) · · · Re ((S)3,MNr
)

...
...

. . .
...

Re ((S)MNr,1) Re ((S)MNr,2) · · · Re ((S)MNr,MNr )

, and d ,


d1

d2
...

dMNr

.

We point out that the coefficient matrix S̄(1) is obtained by taking the real parts of the entries in S and then deleting

the first row. Thus, S̄(1) is of size (MNr − 1)×MNr, which means that its null space is of dimension 1. Since

the null space of a matrix is spanned by its right singular vectors that correspond to the zero singular values [22],

we have that the solutions of S̄(1)d = 0 can be written as[
d1 d2 · · · dMNr

]T
= tv̄(1) = t

[
v̄
(1)
1 v̄

(1)
2 · · · v̄

(1)
MNr

]T
, t ∈ R, (47)

where vector v̄(1) is the right singular vector of S̄(1) corresponding to the 0 singular value. That is, in the SVD

S̄(1) = Ū(1)Λ̄(1)(V̄(1))†, v̄(1) is positioned as follows:

S̄(1) = Ū(1)

 . . .

0

[ · · · v̄(1)
]†
.

Note that by appropriate scaling, (47) can be further equivalently written as[
d1 d2 · · · dMNr

]T
= d1v̂

(1), (48)

where v̂(1) is defined as v̂(1) ,
[

1
v̄
(1)
2

v̄
(1)
1

· · · v̄
(1)
MNr

v̄
(1)
1

]T
.

On the other hand, since u ̸= 0 and by the complementary slackness condition u(PR − d†Sd) = 0, we have

d†Sd = PR. Substituting (48) into this equality, we have d21(v̂
(1))†Sv̂(1) = PR. It then follows that at optimality

in (34), we have

|d1| =

√
PR

(v̂(1))†Sv̂(1)
,

which is the desired result in Lemma 4.
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