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Abstract—One key requirement for storage clouds is to be
able to retrieve data quickly. Recent system measurements have
shown that the data retrieving delay in storage clouds is highly
variable, which may result in a long latency tail. One crucial
idea to improve the delay performance is to retrieve multiple data
copies by using parallel downloading threads. However, how to
optimally schedule these downloading threads to minimize the data
retrieving delay remains to be an important open problem. In this
paper, we develop low-complexity thread scheduling policies for
several important classes of data downloading time distributions,
and prove that these policies are either delay-optimal or within
a constant gap from the optimum delay performance. These
theoretical results hold for an arbitrary arrival process of read
requests that may contain finite or infinite read requests, and for
heterogeneous MDS storage codes that can support diverse storage
redundancy and reliability requirements for different data files.
Our numerical results show that the delay performance of the
proposed policies is significantly better than that of First-Come-
First-Served (FCFS) policies considered in prior work.

I. INTRODUCTION

Cloud storage is a prevalent solution for online data stor-
age, as it provides the appealing benefits of easy access, low
maintenance, elasticity, and scalability. The global cloud storage
market is expected to reach $56.57 billion by 2019, with a
compound annual growth rate of 33.1% [1].

In cloud storage systems, multiple copies of data are gener-
ated using simple replications [2]–[4] or erasure storage codes
[5]–[8], and distributedly stored in disks, in-memory databases
and caches. For an (n, k) erasure code (n > k), data is divided
into k equal-size chunks, which are then encoded into n chunks
and stored in n distinct storage devices. If the code satisfies
the typical maximum distance separable (MDS) property, any
k out of the n chunks are sufficient to restore original data.
When k = 1, the (n, k) erasure code reduces to the case of
data replication (aka repetition codes).

Current storage clouds jointly utilize multiple erasure codes
to support diverse storage redundancy and reliability require-
ments. For instance, in Facebook’s data warehouse cluster,
frequently accessed data (or so called “hot data”) is stored with
3 replicas, while rarely accessed data (“cold data”) is stored by
using a more compressed (14,10) Reed-Solomon code to save
space [6]. Open-source cloud storage softwares, such as HDFS-
RAID [7] and OpenStack Swift [8], have been developed to
support the coexistence of multiple erasure codes.

One key design principle of cloud storage systems is fast
data retrieval. Amazon, Microsoft, and Google all report that a
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slight increase in user-perceived delay will result in a concrete
revenue loss [9], [10]. However, in current storage clouds,
data retrieving time is highly random and may have a long
latency tail due to many reasons, including network conges-
tion, load dynamics, cache misses, database blocking, disk I/O
interference, update/maintenance activities, and unpredictable
failures [2], [11]–[14]. One important approach to curb this
randomness is downloading multiple data copies in parallel.
For example, if a file is stored with an (n, k) erasure code, the
system can schedule more than k downloading “threads”, each
representing a TCP connection, to retrieve the file. The first k
successfully downloaded chunks are sufficient to restore the file,
and the excess downloading threads are terminated to release the
networking resources. By this, the retrieval latency of the file is
reduced. However, scheduling redundant threads will increase
the system load, which may in turn increase the latency. Such
a policy provides a tradeoff between faster retrieval of each file
and the extra system load for downloading redundant chunks.
Therefore, a critical question is “how to optimally manage
the downloading threads to minimize average data retrieving
delay?” Standard tools in scheduling and queueing theories, e.g.,
[15]–[19] and the references therein, cannot be directly applied
to resolve this challenge because they do not allow scheduling
redundant and parallel resources for service acceleration.

In this paper, we rigorously analyze the fundamental delay
limits of storage clouds. We develop low-complexity online
thread scheduling policies for several important classes of data
downloading time distributions, and prove that these policies
are either delay-optimal or within a constant gap from the
optimum delay performance.1 Our theoretical results hold for
an arbitrary arrival process of read requests that may contain
finite or infinite read requests, and for heterogeneous MDS
storage codes that can support diverse code parameters (ni, ki)
for different data files. The main contributions of our paper are
listed as follows and summarized in Table I. An interesting state
evolution argument is developed in this work, which is essential
for establishing the constant delay gaps; the interested reader is
referred to the technical report [20] for the details.

• When the downloading times of data chunks are i.i.d.
exponential with mean 1/µ, we propose a Shortest Ex-
pected Remaining Processing Time policy with Redundant
thread assignment (SERPT-R), and prove that SERPT-

1By constant delay gap, we mean that the delay gap is bounded by a constant
value that is independent of the request arrival process and system traffic load.
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Arrival Parameters of Service Downloading time
Theorem process MDS codes preemption distribution Policy Delay gap from optimum

1 any dmin ≥ L allowed i.i.d. exponential SERPT-R delay-optimal
2 any any allowed i.i.d. exponential SERPT-R 1

µ

∑L−1
l=dmin

1
l

3 any dmin ≥ L not allowed i.i.d. exponential SEDPT-R 1/µ

4 any any not allowed i.i.d. exponential SEDPT-R 1
µ

(∑L−1
l=dmin

1
l
+ 1

)
5 any any not allowed i.i.d. New-Longer-than-Used SEDPT-NR O(lnL/µ)
6 any any allowed i.i.d. New-Longer-than-Used SEDPT-WCR O(lnL/µ)
7 any ki = 1, dmin ≥ L not allowed i.i.d. New-Shorter-than-Used SEDPT-R delay-optimal

TABLE I: Summary of the delay performance of our proposed policies under different settings, where dmin is the minimum
distance among all MDS storage codes defined in (2), 1/µ is the average chunk downloading time of each thread, and L is the
number of downloading threads. The classes of “New-Longer-than-Used” and “New-Shorter-than-Used” distributions are defined
in Section V. Note that the delay gaps in this table are independent of the request arrival process and system traffic load.

R is delay-optimal among all online policies, if (i) the
storage redundancy is sufficiently high and (ii) preemption
is allowed. If condition (i) is not satisfied, we show that
under SERPT-R, the extra delay caused by low storage
redundancy is no more than the average downloading
time of (lnL + 1) chunks, i.e., (lnL + 1)/µ, where L
is the number of downloading threads. (This delay gap
grows slowly with respect to L, and is independent of the
request arrival process and system traffic load.) Further, if
preemption is not allowed, we propose a Shortest Expected
Differentiable Processing Time policy with Redundant
thread assignment (SEDPT-R), which has a delay gap of
no more than the average downloading time of one chunk,
i.e., 1/µ, compared to the delay-optimal policy.

• When the downloading times of data chunks are i.i.d.
New-Longer-than-Used (NLU) (defined in Section V),
we design a Shortest Expected Differentiable Processing
Time policy with Work-Conserving Redundant thread as-
signment (SEDPT-WCR) for the preemptive case and a
Shortest Expected Differentiable Processing Time policy
with No Redundant thread assignment (SEDPT-NR) for
the non-preemptive case. We show that, comparing with the
delay-optimal policy, the delay gaps of preemptive SEDPT-
WCR and non-preemptive SEDPT-NR are both of the order
O(lnL/µ).

• When the downloading times of data chunks are i.i.d.
New-Shorter-than-Used (NSU) (defined in Section V), we
prove that SEDPT-R is delay-optimal among all online
policies, under the conditions that data is stored with
repetition codes, storage redundancy is sufficiently high,
and preemption is not allowed.

We note that the proposed SEDPT-type policies are different
from the traditional Shortest Remaining Processing Time first
(SRPT) policy, and have not been proposed in prior work.

II. RELATED WORK

The idea of reducing delay via multiple parallel data transmis-
sions has been explored empirically in various contexts [21]–
[25]. More recently, theoretical analysis has been conducted
to study the delay performance of data retrieval in distributed
storage systems. One line of studies [26]–[31] were centered
on the data retrieval from a small number of storage nodes,

where the delay performance is limited by the service capability
of individual storage nodes. It was shown in [26] that erasure
storage codes can reduce the queueing delay compared to simple
data replications. In [27], [28], delay bounds were provided for
First-Come-First-Served (FCFS) policies with different numbers
of redundant threads. In [29], a delay upper bound was obtained
for FCFS policies under Poisson arrivals and arbitrary down-
loading time distribution, which was further used to derive a
sub-optimal solution for jointly minimizing latency and storage
cost. In [30], the authors established delay bounds for the classes
of FCFS, preemptive and non-preemptive priority scheduling
policies, when the downloading time is i.i.d. exponential. In
[31], the authors studied when redundant threads can reduce
delay (and when not), and designed optimal redundant thread
scheduling policies among the class of FCFS policies.

The second line of researches [32]–[34] focus on large-scale
storage clouds with a large number of storage nodes, where the
delay performance is constrained by the available networking
resources of the system. In [32], [33], the authors measured the
chunk downloading time over the Amazon cloud storage system
and proposed to adapt code parameters and the number of re-
dundant threads to reduce delay. In [34], it was shown that FCFS
with redundant thread assignment is delay-optimal among all
online policies, under the assumptions of a single storage code,
high storage redundancy and exponential downloading time
distribution. Following this line of research, in this paper, we
consider the more general scenarios with heterogonous storage
codes, general level of storage redundancy, and non-exponential
downloading time distributions, where neither FCFS nor priority
scheduling is close to delay-optimal.

III. SYSTEM MODEL

We consider a cloud storage system that is composed of one
frond-end proxy server and a large number of distributed storage
devices, as illustrated in Fig. 1. The proxy server enqueues the
user requests and establishes TCP connections to fetch data
from the storage devices. In practice, the proxy server also
performs tasks such as format conversion, data compression,
authentication and encryption.2

2Our results can be also used for systems with multiple proxy servers, where
each read request is routed to a proxy server based on geometrical location,
or determined by a round robin or random load balancing algorithm. More
complicated load balancing algorithms will be studied in our future work.
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Fig. 1: System model.

A. Data Storage and Retrieval

Suppose that the file corresponding to request i is stored with
an (ni, ki) MDS code.3 Then, file i is partitioned into ki equal-
size chunks, which are encoded into ni coded chunks and stored
in ni distinct devices. In MDS codes, any ki out of the ni

coded chunks are sufficient to restore file i. Therefore, the cloud
storage system can tolerate ni − ki failures and still secure file
i. Examples of MDS codes include repetition codes (ki = 1)
and Reed-Solomon codes. Let di denote the Hamming distance
of an (ni, ki) MDS code, determined by

di = ni − ki + 1. (1)

The minimum code distance of all storage codes is defined as

dmin , min{di, i = 1, 2, · · · }. (2)

It has been reported in [2], [11]–[14] that the downloading
time of data chunks can be highly unpredictable in storage
clouds. Some recent measurements [32]–[34] on Amazon AWS
show that the downloading times of data chunks stored with dis-
tinct keys can be approximated as independent and identically
distributed (i.i.d.) random variables. In this paper, we assume
that the downloading times of data chunks are i.i.d.4, as in [26]–
[28], [31], [34].

B. Redundant and Parallel Thread Scheduling

The proxy server has L downloading threads, each rep-
resenting a potential TCP connection, to retrieve data from
the distributed storage devices. The value of L is chosen as
the maximum number of simultaneous TCP connections that
can occupy all the available networking bandwidth without
significantly degrading the latency of each individual connection
[32], [33]. A decision-maker at the proxy server determines
which chunks to download and in what order for the L threads
to minimize the average data retrieving delay.

Suppose that a sequence of N read requests arrive at the
queue of the processing server.5 Let ai and ci,π denote the
arrival and completion times of the ith request under pol-
icy π, respectively, where 0 = a1 ≤ a2 ≤ · · · ≤ aN .
Thus, the service latency of request i is given by ci,π − ai,

3The terms “file” and “request” are interchangeable in this paper.
4This assumption is reasonable for large-scale storage clouds, e.g., Amazon

AWS, where individual read operations may experience long latency events,
such as network congestion, cache misses, database blocking, high temperature
or high I/O traffic of storage devices, that are unobservable and unpredictable
by the decision-maker.

5The value of N can be either finite or infinite in this paper. If N tends to
infinite, a lim sup operator is enforced on the right hand side of (3).

which includes both the downloading time and the waiting
time in the request queue. We assume that the arrival process
(a1, a2, · · · ) is an arbitrary deterministic time sequence, while
the departure process (c1,π, c2,π, · · · ) is stochastic because of
the random downloading time. Given the request parameters N
and (ai, ki, ni)

N
i=1, the average flow time of the requests under

policy π is defined as

Dπ =
1

N

N∑
i=1

(E {ci,π} − ai) , (3)

where the expectation is taken with respect to the random
distribution of chunk downloading time for given policy π
and for given request parameters N and (ai, ki, ni)

N
i=1. The

goal of this paper is to design low-complexity online thread
scheduling policies that achieve optimal or near-optimal delay
performance.

Definition 1. Online policy: A scheduling policy is said to be
online if, at any given time t, the decision-maker does not know
the number of requests to arrive after time t, the parameters
(ai, ki, ni) of the requests to arrive, or the realizations of the
(remaining) downloading times of the chunks that have not been
accomplished by time t.

Definition 2. Delay-optimality: A thread scheduling policy π
is said to be delay-optimal if, for any given request parameters
N and (ai, ki, ni)

N
i=1, it yields the shortest average flow time

Dπ among all online policies.

A key feature of this scheduling problem is the flexibility
of redundant and parallel thread scheduling. Take file i as an
example. When ni > ki, one can assign redundant threads
to download more than ki chunks of file i. The first ki
successfully downloaded chunks are sufficient for completing
the read operation. After that, the extra downloading threads
are terminated immediately, which is called service termination.
By doing this, the retrieving delay of file i is reduced. On the
other hand, redundant thread scheduling may cause extra system
load. Therefore, such a policy provides a tradeoff between fast
retrieving of each file and a potentially longer service latency
due to the extra system load, which makes it difficult to achieve
delay-optimality.

C. Service Preemption and Work Conserving

We consider chunk-level preemptive and non-preemptive poli-
cies. When preemption is allowed, a thread can switch to serve
another chunk at any time, and resume to serve the previous
chunk at a later time, continuing from the interrupted point.
When preemption is not allowed, a thread must complete (or
terminate) the current chunk before switching to serve another
chunk. We assume that service terminations and preemptions
are executed immediately with no extra delay.

Definition 3. Work-conserving: A scheduling policy is said to
be work-conserving if all threads are kept busy whenever there
are chunks waiting to be downloaded.
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Remark 1: If preemption is allowed, a delay-optimal policy
must be work-conserving, because the average delay of any non-
work-conserving policy can be reduced by assigning the idle
threads to download more chunks. Meanwhile, if preemption
is not allowed, a work-conserving policy may not be delay-
optimal, because the occupied threads cannot be easily switched
to serve an incoming request with a higher priority.

IV. EXPONENTIAL CHUNK DOWNLOADING TIME

In this section, we study the delay-optimal thread scheduling
when chunk downloading time is i.i.d. exponentially distributed
with mean 1/µ. Non-exponential downloading time distribu-
tions will be investigated in Section V.

A. High Storage Redundancy, Preemption is Allowed

We first consider the case of high storage redundancy such
that dmin ≥ L is satisfied. In this case, we have ni−(ki−1) ≥ L
for all i. Hence, each file i has at least L available chunks even
if ki − 1 chunks of file i have been downloaded. Hence, each
unfinished request has sufficient available chunks such that all
L threads can be simultaneously assigned to serve this request.

Let sj denote the arrival time of the jth arrived chunk down-
loading task of all files and tj denote the completion time of
the jth downloaded chunk of all files. The chunk arrival process
(s1, s2, . . .) is uniquely determined by the request parameters
(ai, ki)

N
i=1. Meanwhile, the chunk departure process (t1, t2, . . .)

satisfies the following invariant distribution property:

Lemma 1. [34, Theorem 6.4] Suppose that (i) dmin ≥ L and
(ii) the chunk downloading time is i.i.d. exponentially distributed
with mean 1/µ. Then, for any given request parameters N and
(ai, ki, ni)

N
i=1, the distribution of the chunk departure process

(t1, t2, . . .) is invariant under any work-conserving policy.

We propose a preemptive Shortest Expected Remaining Pro-
cessing Time first policy with Redundant thread assignment
(preemptive SERPT-R):

Suppose that, at any time t, there are V unfinished requests
i1, i2, . . . , iV , such that αj chunks need to be downloaded
for completing request ij . Under SERPT-R, each idle thread
is assigned to serve one available chunk of request ij with
the smallest αj . (Due to storage redundancy, the number of
available chunks of request ij is larger than αj .) If all the
available chunks of request ij are under service, then the idle
thread is assigned to serve one available chunk of request ij′
with the second smallest αj′ . This procedure goes on, until all
L threads are occupied or all the available chunks of the V
unfinished requests are under services.

This policy is an extension of Shortest Remaining Processing
Time first (SRPT) policy [15], [16] because it schedules parallel
and redundant downloading threads to serve the requests with
the least workload. The following theorem shows that this policy
is delay-optimal under certain conditions.

Theorem 1. Suppose that (i) dmin ≥ L, (ii) preemption is
allowed, and (iii) the chunk downloading time is i.i.d. ex-
ponentially distributed with mean 1/µ. Then, for any given

request parameters N and (ai, ki, ni)
N
i=1, preemptive SERPT-R

is delay-optimal among all online policies.

Remark 2: Theorem 1 and the subsequent theoretical results
of this paper are difficult to establish for the following reasons:
1) Each request i is partitioned into a batch of ki chunk
downloading tasks, and the processing time of each task is
random. 2) There are ni − ki redundant chunks for request i,
such that completing any ki of the ni tasks would complete the
request. 3) The system has L threads which can simultaneously
process L tasks belonging to one or multiple requests. 4) If
redundant downloading threads are scheduled, the associated
extra system load must be considered when evaluating the delay
performance.

Proof. We provide a proof sketch of Theorem 1. Consider
an arbitrarily given chunk departure sample path (t1, t2, . . .).
According to the property of the SRPT principle [15], [16],
preemptive SERPT-R minimizes 1

N

∑N
i=1 (ci,π − ai) for any

given sample path (t1, t2, . . .). Further, Lemma 1 tells us that the
distribution of (t1, t2, . . .) is invariant among the class of work-
conserving policies. By this, preemptive SERPT-R is delay-
optimal among the class of work-conserving policies. Finally,
since a delay-optimal policy must be work-conserving when
preemption is allowed, Theorem 1 follows. See [20] for the
details.

In Theorem 6.4 of [34], it was shown that a First-Come-First-
Served policy with Redundant thread assignment (FCFS-R) is
delay-optimal when ki = k for all i and dmin ≥ L. In this case,
preemptive SERPT-R reduces to the following policy: After
a request departs from the system, pick any waiting request
(not necessarily the request arrived the earliest) and assign all
L threads to serve the available chunks of this request until
it departs. Hence, FCFS-R belongs to the class of SERPT-R
policies, and Theorem 6.4 of [34] is a special case of Theorem
1.

B. General Storage Redundancy, Preemption is Allowed

When dmin < L, some requests may have less than L
available chunks, such that not all of the L threads can be
assigned to serve it. In this case, SERPT-R may not be delay-
optimal. This is illustrated in the following example.

Example 1. Consider two requests with parameters given as
(k1 = 1, n1 = 4, d1 = 4, a1 = 0) and (k2 = 2, n2 = 2, d2 =
1, a2 = 0). The number of threads is L = 4. Under SERPT-R,
all 4 threads are assigned to serve request 1 after time zero.
However, after request 1 is completed, the chunk downloading
rate is reduced from 4µ to 2µ, because request 2 only has
n2 = 2 chunks. Furthermore, after one chunk of request 2 is
downloaded, the chunk downloading rate is reduced from 2µ
to µ. The average flow time of SERPT-R is DSERPT-R = 1/µ
seconds.

We consider another policy Q: after time zero, 2 threads
are assigned to serve request 1 and 2 threads are assigned
to serve request 2. After the first chunk is downloaded, if the
downloaded chunk belongs to request 1, then request 1 departs



5

and 2 threads are assigned to serve request 2. If the downloaded
chunk belongs to request 2, then 3 threads are assigned to serve
request 1 and 1 thread is assigned to serve request 2. After
the second chunk is downloaded, only one request is left and
the threads are assigned to serve the available chunks of this
request. The average flow time of policy Q is DQ = 61/(64µ)
seconds. Hence, SERPT-R is not delay-optimal.

Next, we bound the delay penalty associated with removing
the condition dmin ≥ L.

Theorem 2. If (i) preemption is allowed and (ii) the
chunk downloading time is i.i.d. exponentially distributed with
mean 1/µ. Then, for any given request parameters N and
(ai, ki, ni)

N
i=1, the average flow time of preemptive SERPT-R

satisfies

Dopt ≤ Dprmp,SERPT-R ≤ Dopt +
1

µ

L−1∑
l=dmin

1

l
, (4)

where dmin is defined in (2).

Proof. Here is a proof sketch of Theorem 2. We first use a state
evolution argument to show that, after removing the condition
dmin ≥ L, SERPT-R needs to download L − dmin or fewer
additional chunks after any time t, so as to accomplish the
same number of requests that are completed by SERPT-R with
the condition dmin ≥ L during (0, t]. Further, according to the
properties of exponential distribution, the average time for the
system to download L−dmin extra chunks under the conditions
of Theorem 2 is upper bounded by the last term of (4). This
completes the proof. See [20] for the details.

Note that if dmin ≥ L, the last term in (4) becomes zero
which corresponds to the case of Theorem 1; if dmin < L,
the last term in (4) is upper bounded by 1

µ

[
ln(L−1

dmin
) + 1

]
.

Therefore, the delay penalty caused by low storage redundancy
is of the order O(lnL/µ), and is insensitive to increasing L.
Further, this delay penalty remains constant for any request
arrival process and system traffic load.

C. High Storage Redundancy, Preemption is Not Allowed

Under preemptive SERPT-R, each thread can switch to serve
another request at any time. However, when preemption is not
allowed, a thread must complete or terminate the current chunk
downloading task before switching to serve another request. In
this case, SERPT-R may not be delay-optimal, as illustrated in
the following example.

Example 2. Consider two requests with parameters given as
(k1 = 2, n1 = 3, d1 = 2, a1 = 0) and (k2 = 1, n2 =
2, d2 = 2, a2 = ε), where ε > 0 can be arbitrarily close to
zero. The number of threads is L = 2, the chunk downloading
time is i.i.d. exponentially distributed with mean 1/µ. Under
SERPT-R, the two threads are assigned to serve request 1 after
time zero. After the first chunk is downloaded, one thread is
assigned to serve request 2 and the other thread remains to
serve request 1. After the second chunk is downloaded, one of
the requests has departed, and the two threads are assigned to

serve the remaining request. The average flow time of SERPT-R
is DSERPT-R = 5/(4µ)− ε/2 seconds.

We consider another non-preemptive policy Q: the threads
remain idle until time ε. After ε, the two threads are assigned
to serve request 2. After the first chunk is downloaded, request
2 has departed. Then, the two threads are assigned to serve
request 1, until it departs. The average flow time of policy Q is
DQ = 1/µ+ε/2 seconds. Since ε is arbitrarily small, SERPT-R
is not delay-optimal when preemption is not allowed.

We propose a non-preemptive Shortest Expected Differential
Processing Time first policy with Redundant thread assignment
(non-preemptive SEDPT-R), where the service priority of a
file is determined by the difference between the number of
remaining chunks of the file and the number of threads that
has been assigned to the file.

Suppose that, at any time t, there are V unfinished requests
i1, i2, . . . , iV , such that αj chunks need to be downloaded for
completing request ij at time t and δj threads have been
assigned to serve request ij . Under non-preemptive SEDPT-
R, each idle thread is assigned to serve one available chunk of
request ij with the smallest αj−δj . (Due to storage redundancy,
the number of available chunks of request ij is larger than αj .
Hence, it may happen that αj − δj < 0 because of redundant
chunk downloading.) If all the available chunks of request ij
are under service, then the idle thread is assigned to serve one
available chunk of request ij′ with the second smallest αj′−δj′ .
This procedure goes on, until all L threads are occupied or all
the available chunks of the V unfinished requests are under
services.

The intuition behind non-preemptive SEDPT-R is that δj
chunks of request ij will be under service after time t for
any non-preemptive policy, and thus should be excluded when
determining the service priority of request ij . This is different
from the traditional SRPT-type policies [15]–[19], which do not
exclude the chunks under service when determining the service
priorities of the requests. The delay performance of this policy
is characterized in the following theorem:

Theorem 3. Suppose that (i) dmin ≥ L, (ii) preemption is
not allowed, and (iii) the chunk downloading time is i.i.d.
exponentially distributed with mean 1/µ. Then, for any given
request parameters N and (ai, ki, ni)

N
i=1, the average flow time

of non-preemptive SEDPT-R satisfies

Dopt ≤ Dnon-prmp,SEDPT-R ≤ Dopt+ 1/µ. (5)

Proof. We provide a proof sketch of Theorem 3. Theorem 1
tells us that preemptive SERPT-R provides a lower bound of
Dopt. On the other hand, non-preemptive SEDPT-R provides
an upper bound of Dopt. Thus, we need to show that the delay
gap between preemptive SERPT-R and non-preemptive SEDPT-
R is at most 1/µ. Towards this goal, we use a state evolution
argument to show that for any time t and any given sample
path of chunk departures (t1, t2, . . .), non-preemptive SEDPT-
R needs to download L or fewer additional chunks after time
t, so as to accomplish the same number of requests that are
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completed under preemptive SERPT-R during (0, t]. By the
properties of exponential distribution, the average time for the L
threads to download L chunks under non-preemptive SEDPT-R
is 1/µ, and Theorem 3 follows. See [20] for the details.

Theorem 3 tells us that the delay gap between non-preemptive
SEDPT-R and the optimal policy is at most the average down-
loading time of one chunk by each thread, i.e., 1/µ. Intuitively
speaking, this is because each thread only needs to wait for
downloading one chunk, before switching to serve another
request. However, the proof of Theorem 3 is non-trivial, because
it must work for any possible sample path of the downloading
procedure.

D. General Storage Redundancy, Preemption is Not Allowed

When preemption is not allowed and the condition dmin ≥ L
is removed, we have the following result.

Theorem 4. Suppose that (i) preemption is not allowed, and
(ii) the chunk downloading time is i.i.d. exponentially distributed
with mean 1/µ. Then, for any given request parameters N and
(ai, ki, ni)

N
i=1, the average flow time of non-preemptive SEDPT-

R satisfies

Dopt ≤ Dnon-prmp,SEDPT-R ≤ Dopt+
1

µ
+

1

µ

L−1∑
l=dmin

1

l
, (6)

where dmin is defined in (2).

If dmin ≥ L, the last term in (6) becomes zero which
corresponds to the case of Theorem 3.

V. NON-EXPONENTIAL CHUNK DOWNLOADING TIME

In this section, we consider two classes of general download-
ing time distributions: New-Longer-than-Used (NLU) distribu-
tions and New-Shorter-than-Used (NSU) distributions, defined
as follows.6

Definition 4. New-Longer-than-Used distributions: A distri-
bution on [0,∞) is said to be New-Longer-than-Used (NLU),
if for all t, τ ≥ 0 and P(X > τ) > 0, the distribution satisfies

P(X > t) ≥ P(X > t+ τ |X > τ). (7)

New-Shorter-than-Used distributions: A distribution on
[0,∞) is said to be New-Shorter-than-Used (NSU), if for all
t, τ ≥ 0 and P(X > τ) > 0, the distribution satisfies

P(X > t) ≤ P(X > t+ τ |X > τ). (8)

NLU (NSU) distributions are closely related to log-concave
(log-convex) distributions. Many commonly used distributions
are NLU or NSU distributions [35]. In practice, NLU distri-
butions can be used to characterize the scenarios where the

6Note that New-Longer-than-Used (New-Shorter-than-Used) is equivalent
to the term New-Better-than-Used (New-Worse-than-Used) used in reliability
theory [35], [36], where “better” means a longer lifetime. However, this may
lead to confusion in the current paper, where “better” means a shorter delay.
We choose to use New-Longer-than-Used (New-Shorter-than-Used) to avoid
confusion. In a recent work [31], the New-Longer-than-Used (New-Shorter-
than-Used) property was termed light-everywhere (heavy-everywhere).

downloading time is a constant value followed by a short latency
tail. For instance, recent studies [32], [33] suggest that the
data downloading time of Amazon AWS can be approximated
as a constant delay plus an exponentially distributed random
variable, which is an NLU distribution. On the other hand,
NSU distributions can be used to characterize occasional slow
responses resulting from TCP retransmissions, I/O interference,
database blocking and/or even disk failures.

We will require the following definitions: Let x⃗ =
(x1, x2, . . . , xm) and y⃗ = (y1, y2, . . . , ym) be two vectors in
Rm, then we denote x⃗ ≤ y⃗ if xi ≤ yi for i = 1, 2, . . . ,m.

Definition 5. Stochastic Ordering: [36] Let X and Y be two
random variables. Then, X is said to be stochastically smaller
than Y (denoted as X ≤st Y ), if

P(X > t) ≤ P(Y > t) for all t ∈ R. (9)

Definition 6. Multivariate Stochastic Ordering: [36] A set
U ⊆ Rm is called upper if y⃗ ∈ U whenever y⃗ ≥ x⃗ and x⃗ ∈ U .
Let X⃗ and Y⃗ be two random vectors. Then, X⃗ is said to be
stochastically smaller than Y⃗ (denoted as X⃗ ≤st Y⃗ ), if

P(X⃗ ∈ U) ≤ P(Y⃗ ∈ U) for all upper sets U ⊆ Rm. (10)

Stochastic ordering of stochastic processes (or infinite vec-
tors) can be defined similarly [36].

A. NLU Chunk Downloading Time Distributions

We consider a non-preemptive Shortest Expected Differential
Processing Time first policy with No Redundant thread assign-
ment (non-preemptive SEDPT-NR):

Suppose that, at any time t, there are V unfinished requests
i1, i2, . . . , iV , such that αj chunks need to be downloaded for
completing request ij at time t and δj threads have been
assigned to serve request ij . Under non-preemptive SEDPT-
NR, each idle thread is assigned to serve one available chunk
of request ij with the smallest αj − δj . If αj threads have
been assigned to request ij , then the idle thread is assigned
to serve one available chunk of request ij′ with the second
smallest αj′ − δj′ . This procedure goes on, until all L threads
are occupied or each request ij is served by αj threads.

Note that since at most αj threads are assigned to request ij ,
we have αj − δj ≥ 0 for all ij under non-preemptive SEDPT-
NR. SEDPT-NR is a non-work-conserving policy. When pre-
emption is allowed, the delay performance of SEDPT-NR
can be improved by exploiting the idle threads to download
redundant chunks. This leads to a preemptive Shortest Expected
Differential Processing Time first policy with Work-Conserving
Redundant thread assignment (preemptive SEDPT-WCR):

Upon the decision of SEDPT-NR, if each request ij is served
by αj threads and there are still some idle threads, then assign
these threads to download some redundant chunks to avoid
idleness. When a new request arrives, the threads downloading
redundant chunks will be preempted to serve the new arrival
request.

Let us consider the service time for a thread to complete
downloading one chunk. If the thread has spent τ seconds
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on one chunk, the tail probability for completing the current
chunk under service is P(X > t + τ |X > τ). On the other
hand, the tail probability for switching to serve a new chunk
is P(X > t). Since the chunk downloading time is i.i.d. NLU,
it is stochastically better to keep downloading the same chunk
than switching to serve a new chunk.

Lemma 2. Suppose that (i) the system load is high such that
all L threads are occupied at all time t ≥ 0 and (ii) the chunk
downloading time is i.i.d. NLU. Then, for any given request
parameters N and (ai, ki, ni)

N
i=1, the chunk departure instants

(t1, t2, . . .) under non-preemptive SEDPT-NR are stochastically
smaller than those under any other online policy.

Lemma 3. Suppose that (i) the system load is high such that
all L threads are occupied at all time t ≥ 0, (ii) preemption is
not allowed, and (iii) the chunk downloading time is i.i.d. NLU.
Then, for any given request parameters N and (ai, ki, ni)

N
i=1,

the average flow time of non-preemptive SEDPT-NR satisfies

Dopt ≤ Dnon-prmp,SEDPT-NR ≤ Dopt + E
{

max
l=1,...,L

Xl

}
, (11)

where the Xl’s are i.i.d. chunk downloading times.

If the average chunk downloading time is E {Xl} = 1/µ,
then the last term in (11) is bounded by

1

µ
≤ E

{
max

l=1,...,L
Xl

}
≤ 1

µ

L∑
l=1

1

l
, (12)

where the lower bound is trivial, and the upper bound follows
from the property of New-Longer-than-Used distributions in
Proposition 2 of [37]. Therefore, the delay gap in Lemma 3
is no more than (lnL+1)/µ. Next, we remove condition (i) in
Lemma 3 and obtain the following result.

Theorem 5. Suppose that (i) preemption is not allowed and (ii)
the chunk downloading time is i.i.d. NLU. Then, for any given
request parameters N and (ai, ki, ni)

N
i=1, the average flow time

of non-preemptive SEDPT-NR satisfies

Dopt ≤ Dnon-prmp,SEDPT-NR ≤ Dopt

+E
{

max
l=1,...,L

Xl

}
+ E

{
max

l=1,...,L−1
Xl

}
, (13)

where the Xl’s are i.i.d. chunk downloading times.

When preemption is allowed, preemptive SEDPT-WCR can
achieve a shorter average delay than non-preemptive SEDPT-
NR. In this case, we have the following result.

Theorem 6. Suppose that (i) preemption is allowed and (ii)
the chunk downloading time is i.i.d. NLU. Then, for any given
request parameters N and (ai, ki, ni)

N
i=1, the average flow time

of preemptive SEDPT-WCR satisfies

Dopt ≤ Dprmt,SEDPT-WCR ≤ Dopt

+E
{

max
l=1,...,L

Xl

}
+ E

{
max

l=1,...,L−1
Xl

}
, (14)

where the Xl’s are i.i.d. chunk downloading times.

Similar to Lemma 3, the delay gaps in Theorems 5 and 6 are
also of the order O(lnL/µ).

B. NSU Chunk Downloading Time Distributions

If the chunk downloading time is i.i.d. NSU, one can show
that it is stochastically better to switch to a new chunk than
sticking to downloading the same chunk. We consider the
scenario that preemption is not allowed and obtain the following
result.

Lemma 4. Suppose that (i) dmin ≥ L, (ii) ki = 1 for all i,
(iii) preemption is not allowed, and (iv) the chunk downloading
time is i.i.d. NSU. Then, for any given request parameters N and
(ai, ki = 1, ni)

N
i=1, the chunk departure instants (t1, t2, . . . , tN )

under non-preemptive SEDPT-R are stochastically smaller than
those under any other online policy.

Theorem 7. Suppose that (i) dmin ≥ L, (ii) ki = 1 for all i,
(iii) preemption is not allowed, and (iv) the chunk downloading
time is i.i.d. NSU. Then, for any given request parameters N and
(ai, ki = 1, ni)

N
i=1, non-preemptive SEDPT-R is delay-optimal

among all online policies.

A special case of Theorem 7 was obtained in Theorem 3 of
[31], where delay-optimality was shown only for high system
load such that all L threads are occupied at all time.

VI. NUMERICAL RESULTS

We present some numerical results to illustrate the delay
performance of different scheduling policies and validate the
theoretical results. All these results are averaged over 100
random samples for the downloading times of data chunks.

A. Exponential Chunk Downloading Time Distributions

Consider a system with N = 3000 request arrivals, among
which p1 = 90% of the requested files are stored with a
(n1, k1, d1) = (3, 1, 3) repetition code, and p2 = 10% of
the requested files are stored with a (n2, k2, d2) = (14, 10, 5)
Reed-Solomon code. Therefore, dmin = 3. The code parameters
are drawn at random, i.i.d. from these two classes. The inter-
arrival time of the requests is i.i.d. distributed as a mixture of
exponentials:

X ∼
{

Exponential(rate = 0.5λ) with probability 0.99;
Exponential(rate = 50.5λ) with probability 0.01.

The average chunk downloading time is 1/µ = 0.02s. The traffic
intensity ρ is determined by

ρ =
(p1k1 + p2k2)λ

Lµ
. (15)

Figures 2(a)-(d) illustrate the numerical results of average
flow time Dπ versus traffic intensity ρ for 4 scenarios where
the chunk downloading time is i.i.d. exponentially distributed.
One can observe that SERPT-R and SEDPT-R have shorter
average flow times than the First-Come-First-Served policy with
Redundant thread assignment (FCFS-R) [34]. If L = dmin = 3
and preemption is allowed, by Theorem 1, preemptive SERPT-
R is delay-optimal. For the other 3 scenarios, upper and lower
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(a) Preemption is allowed, dmin = L = 3
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(b) Preemption is not allowed, dmin = L = 3
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(c) Preemption is allowed, dmin < L = 5
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(d) Preemption is not allowed, dmin < L = 5

Fig. 2: Average flow time Dπ versus traffic intensity ρ, where the chunk downloading time is i.i.d. exponentially distributed.

bounds of the optimum delay performance are plotted. By
comparing with the delay lower bound, we find that the extra
delay caused by non-preemption is 0.0114s which is smaller
than 1/µ = 0.02s, and the extra delay caused by dmin < L is
0.0034s which is smaller than 1

µ

∑L−1
l=dmin

1
l = 0.0117s. These

results are in accordance with Theorems 1-4.

B. NLU Chunk Downloading Time Distributions

For the NLU distributions, the system setup is the same
with that in the previous subsection. We assume that the chunk
downloading time X is i.i.d. distributed as the sum of a constant
and a value drawn from an exponential distribution:

Pr(X > x) =

{
1, if x ≤ 0.4

µ ;

exp
[
− µ

0.6 (x− 0.4
µ )

]
, if x ≥ 0.4

µ ,
(16)

which was proposed in [32], [33] to model the data downloading
time in Amazon AWS system. The traffic intensity ρ is also
given by (15).

Figure 3 illustrates the average flow time Dπ versus traffic
intensity ρ when L = 3 and the chunk downloading time is i.i.d.
NLU. As expected, preemptive SEDPT-WCR has a shorter aver-
age delay than non-preemptive SEDPT-NR. In the preemptive
case, the delay performance of SEDPT-WCR is much better
than those of non-preemptive SEDPT-R and the First-Come-
First-Served policy with Work-Conserving Redundant thread
assignment (FCFS-WCR). Therefore, preemptive SEDPT-WCR
and non-preemptive SEDPT-NR are appropriate for i.i.d. NLU
downloading time distributions. By comparing with the delay
lower bound, we find that the maximum extra delays of preemp-
tive SEDPT-WCR and non-preemptive SEDPT-NR are 0.0229s

and 0.0230s, respectively. Both of them are smaller than the
delay gap in Theorems 5 and 6, whose value is 0.0560s.

C. NSU Chunk Downloading Time Distributions

For NSU distributions, we consider that all N = 3000 re-
quested files are stored with a (n1, k1, d1) = (3, 1, 3) repetition
code. The chunk downloading time X is chosen i.i.d. as a
mixture of exponentials:

X ∼
{

Exponential(rate = 0.4µ) with probability 0.5;
Exponential(rate = 1.6µ) with probability 0.5.

Under SEDPT-R, the average time for completing one chunk is
E {minl=1,··· ,L Xl}, where the Xl’s are i.i.d. chunk download-
ing times. Therefore, the traffic intensity ρ is

ρ = λE
{

min
l=1,··· ,L

Xl

}
. (17)

Figure 4 shows the average flow time Dπ versus traffic intensity
ρ where L = 3, preemption is not allowed, and the chunk
downloading time is i.i.d. NSU. In this case, SEDPT-R is delay-
optimal. We observe that the delay performance of SEDPT-
WCR is quite bad and the delay gap between SEDPT-R and
SEDPT-WCR is unbounded. This is because SEDPT-WCR has
a smaller throughput region than SEDPT-R. Therefore, SEDPT-
R is appropriate for i.i.d. NSU downloading time distributions.

VII. CONCLUSIONS

In this paper, we have analytically characterized the delay-
optimality of data retrieving in distributed storage systems with
multiple storage codes. Under several important settings, we
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Fig. 3: Average flow time Dπ versus traffic intensity ρ, where
the chunk downloading time is i.i.d. NLU.
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Fig. 4: Average flow time Dπ versus traffic intensity ρ, where
the chunk downloading time is i.i.d. NSU.

have shown that the proposed policies are either delay-optimal
or within a constant gap from the optimum delay performance.

There are several important open problems concerning the
analytical characterization of data retrieving delay:

• What is the optimal policy for other classes of non-
exponential service distributions?

• What is the optimal policy when the service time distribu-
tions are heterogeneous across data chunks?

• What is the optimal policy when latency and downloading
cost need to be jointly considered?

• How to design low-latency policies under delay metrics
other than average flow time?
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