
On Optimal Dynamic Scheduling for Sum-Queue

Minimization in Trees

Srikanth Hariharan

Department of ECE

The Ohio State University

Columbus, OH - 43210

Email: harihars@ece.osu.edu

Ness B. Shroff

Departments of ECE and CSE

The Ohio State University

Columbus, OH - 43210

Email: shroff@ece.osu.edu

Abstract—We investigate the problem of minimizing the sum
of the queues of all the nodes in a wireless network with a
tree topology. Nodes send their packets to the tree’s root (sink).
We consider a time-slotted system, and a primary interference
model. We first consider the case where the root has only one
child while the rest of the tree is arbitrary, and provide a causal
sample-path delay optimal scheduling policy, i.e., at each time
slot, for any traffic arrival pattern, the sum of the queues of
all the nodes is minimum among all policies. We are able to
fully characterize tree structures for which such policies exist. In
particular, when the root has multiple children, there exists a
causal sample-path delay optimal policy as long as only one
child is not a leaf node. We also show that for any other tree
structure there exists no causal sample-path delay optimal policy,
thus underscoring the inherent limitation of using sample-path
optimality as a performance metric and implying that other
weaker metrics of delay performance should be investigated.

I. INTRODUCTION

We investigate the problem of finding sample-path optimal

scheduling policies for minimizing the sum of the queues of

all the nodes for convergecasting [1] in a wireless network

with a tree topology. In the convergecasting problem, nodes

send their packets to a sink (which is the root of the tree).

Convergecasting has a number of applications, for instance, in

wireless sensor networks, where the sink desires to obtain all

the sensor measurements, and take a decision based on these

measurements. Since the sink typically requires to receive

these packets in a timely manner, and since interference is

a critical aspect of wireless networks, it is important to find

a transmission schedule such that packets reach the sink in

minimum time. We are interested in minimizing the sum of

queues in the system as it can be shown to minimize the delay

experienced by packets in the system.

Delay efficient convergecasting has been well studied in

the scheduling literature. Tassiulas et. al., [2] first studied the

problem of dynamic scheduling for convergecasting in tandem

networks with the sink at the root of the chain. They showed

that for the primary (or one-hop) interference model (where

two links that share a node cannot be active at the same time),

for any traffic arrival pattern, any maximal matching policy

This work was supported in part by ARO MURI Awards W911NF-07-
10376 (SA08-03) and W911NF-08-1-0238, and NSF Awards 1012700-CNS,
0721236-CNS, and 0721434-CNS.

that gives priority to the link closer to the sink is optimal

in the sense that the sum of the queues of all the nodes in

the network is minimum at each time slot. This is a very

strong result because for any sample-path arrival pattern, this

policy is optimal. Also, it is causal as it does not require future

knowledge of arrivals. Ji et. al., [3] consider small generalized

switches with less than or equal to four links. They develop a

sample-path optimal policy for switches with three links, and a

heavy-traffic optimal policy for switches with four links. In [4],

Gupta et. al., have provided a sample-path delay optimal policy

for a clique wireless network where only one link can transmit

at any time, and there are multi-hop flows. Venkataramanan et.

al., [1] have shown that the policy of giving priority to links

closer to the sink is optimal in the large deviations sense, i.e.,

the rate of decay of the probability that the sum of all the

queues > B as B → ∞ is maximum, even in a general tree

topology.

Apart from the literature considering traffic arrivals, there

exist a number of works studying the convergecasting problem

in the absence of arrivals. Florens et. al., [5] have studied the

problem of minimizing the time by which all the packets in a

network (with a tree topology) reach the sink, for an one-hop

interference model. They propose polynomial time algorithms

for this problem. Bermond et. al., [6] and Gargano et. al., [7]

have further studied this problem for disk based communica-

tion model, and arbitrary network topologies respectively.

In this work, we wish to study the problem of convergecast-

ing for wireless networks with a tree topology for arbitrary

traffic arrival patterns. Specifically, we are interested in being

able to characterize all possible tree structures for which

sample path delay-optimal policies exist.

Our contributions in this work are the following.

• For tree networks where the root of the tree has only one

child while the rest of the tree is arbitrary, we show that

the policy of giving priority to links closer to the sink

minimizes the sum of the queues of all the nodes in the

network for every time slot, and for any traffic arrival

pattern.

• Further, we provide a sample-path delay optimal schedul-

ing policy for tree structures, where all but one of the

root’s children is not a leaf node.

• Surprisingly, we show that for all other tree structures,

there exists a traffic arrival pattern such that without

having future knowledge of the arrival pattern, there

exists no sample-path delay optimal policy. Thus, we

completely classify tree structures for which there exists

a causal sample-path delay optimal policy, and for which

there does not.

The rest of this paper is organized as follows. In Section II,

we describe the model and notations. In Section III, we discuss

our result for trees with the root having exactly one child. In

Section IV, we develop a sample-path delay optimal schedul-

ing policy for trees where all but one of the root’s children is

not a leaf node. Further, we show that there does not exist any

sample-path delay optimal scheduling policy for all other tree

structures. We discuss various metrics of delay optimality for

tree structures such as evacuation-time optimality, and delay

optimality from a large deviations perspective. Finally, we

conclude the paper in Section V.

II. SYSTEM MODEL

We model the network as a graph G(V,E), where V is

the set of nodes and E is the set of links. The graph G is

a tree. We denote 0 to be the sink which is the root of the

tree. The sink does not make any transmissions. We assume a

time-slotted and synchronized system. We consider a one-hop

(or node exclusive or primary) interference model where two

links that share a node cannot be active at the same time. As

in [2], [5], we assume unit capacity links, i.e., a node can at

most transmit one packet to its parent during each time slot.

The external packet arrival pattern at nodes is arbitrary and

unknown. All packets in the network have the sink 0 as the

eventual destination.

III. TREES - DEGREE OF SINK IS ONE

In this section, we develop a sample-path optimal schedul-

ing policy for tree networks where the degree of the sink 0
is one, i.e., the sink has exactly one child. We first define an

evacuation time optimal policy.

Evacuation Time Optimal Policy: Consider a network where

each node has a fixed number of packets destined to given

destinations. An evacuation time optimal policy is a scheduling

policy such that in the absence of further arrivals, the time by

which the system is evacuated (i.e., the last packet reaches its

destination) is minimum.

In [5], an evacuation time optimal policy has been proposed

for trees where the degree of the sink is one. We show that

this evacuation time optimal policy is actually sample-path

delay optimal (i.e., at each time slot, for any traffic arrival

pattern, the sum of the queues of all the nodes in the network

is minimum among all policies) for these networks.

A. Sample-Path Optimal Policy

As defined in [5], we first define an equivalent linear

network. For a tree network (with sink degree one) G(V,E)
with V nodes and E edges, where each node i has βi

packets during a given time slot, the equivalent linear net-

work G(Vl, El) is defined as follows: Vl = {0, 1, ..., N},

El = {(i − 1, i), 1 ≤ i ≤ N} where N = max
i∈V

(d(0, i)).

d(0, i) represents the distance of node i from the sink node

0. Further, each node j ∈ Vl has αj packets during the same

time slot, where αj =
∑

i∈V :d(0,i)=j

βi.

Figure 1 gives an example of this transformation. The sink

is denoted by the filled circle. The farthest node in the tree

is 3 hops away from the sink. Therefore, the equivalent linear

network has 3 nodes and the sink. The number of packets at

each node is mentioned in the figure. The total number of

packets from nodes that are 2 hops away from the sink is 7

(=3+4), and that from nodes that are 3 hops away from the

sink is 9 (=6+1+2). Therefore, the equivalent linear network

has 7 packets in Q, and 9 packets in R.

! "

#$ %

&

' (

) * +

,

-

.

&

/

0

Fig. 1. Equivalent Linear Network

We show here that the sample-path optimal policy for

this class of tree networks is simply to schedule packets in

the equivalent linear network according to the sample-path

optimal policy for linear networks defined in [2]. In [5], this

policy is shown to be evacuation time optimal for this class

of trees. For the reader’s convenience, we provide the sample-

path optimal policy for linear networks below. We also explain

how to convert the schedule for the equivalent linear network

into a schedule for the original tree.

Consider a tandem (linear) network consisting of N + 1
nodes indexed from 0 to N . Node 0 is the root of the tandem

network. We have the following notations and definitions

(Table I).

For the convergecasting problem, the queue length vector

evolves as X(t+ 1) = X(t) + RI(t+ 1) + A(t+ 1), where R

is an N ×N matrix with elements

rij =

1, j = i+ 1
−1, i = j

0, otherwise

(1)

Note that the above equation is for the equivalent linear

network. For the original tree, rij is the same except that “j =
i+ 1” is replaced by “j is a child of i”.

Definition: We now define the stationary policy π0 which, at

slot t, selects the activation vector I(t) = g0(X(t− 1)), where

g0 : ZN
+ → S is defined as follows. Let i = g0(x) and ij , xj

be the jth elements of vectors i and x respectively. The vector

TABLE I
DEFINITIONS

1 Activation Set: A set of links that can be simultaneously activated such

that no two links interfere with each other according to the one-hop

interference model.

2 Activation Vector: An N -dimensional binary indicator vector i with one

element for each link (which is not zero if and only if the link belongs

to the activation set).

3 S: Set of all possible activation vectors.

4 Ai(t): Set of exogenous packet arrivals to node i at slot t.

5 A(t): A(t) = (Ai(t), i = 1, ..., N) is the vector of arrivals at all nodes

during slot t.

6 Xi(t): Length of the queue of packets at node i by the end of slot t.

Xi(t) ≥ 0 ∀i ∈ {1, 2, ..., N}.
7 X(t): X(t) = (Xi(t), i = 1, ..., N) is the vector of queue lengths at all

nodes at the end of slot t.

8 X: The queue length process {X(t)}∞t=1.

9 I(t): Indicator vector denoting the set of links activated at time slot t.

A link is activated only if the corresponding node has packets to send.

i is defined recursively as follows. i1 = 1, if x1 > 0, and 0,

otherwise. For j = 2, ..., N , ij = 1, if xj > 0 and ij−1 = 0.

Otherwise, ij = 0.

It has been shown in [2] that π0 is a sample-path de-

lay optimal scheduling policy for convergecasting in tandem

networks under the one-hop interference model. However,

when we apply this policy to the equivalent linear network

that we described earlier, we need to clarify issues regarding

transforming the schedule of the equivalent linear network

back to a schedule for the original tree network.

• According to policy π0, any node i in the equivalent linear

network can schedule at most one packet during any time

slot. This means that among all nodes that are i hops away

from node 0 in the original tree, at most one packet will

be scheduled. Note that the one-hop interference model

allows multiple nodes (at the same distance from the sink)

to potentially schedule their transmissions simultaneously

if they do not have the same parent. However, policy π0

does not allow such schedules. This implies that even

without Maximal Matching, this policy is optimal. Note

that a Maximal Matching policy is one that schedules

a set of non-interfering links such that no additional

link can be included in the set without interfering with

at least one of the existing links, i.e., the set of links

scheduled is maximal. It is interesting that even without

scheduling additional non-interfering links, this policy is

delay optimal.

• Suppose that a node i in the equivalent linear network

is selected to schedule during a certain slot according

to π0. Consider nodes that are i hops away from node

0 in the original tree that have at least one packet to

schedule. One of these nodes can be chosen arbitrarily

to schedule its packet during that slot. This means that the

optimal solution neither depends on the structure of the

tree nor the number of packets at each node. For example,

in Figure 1, we can arbitrarily choose to schedule one of

{D,E, F} according to π0.

• If a node i in the equivalent linear network is selected

to schedule during a certain slot according to π0, none

of the nodes that are i − 1 hops away from node 0
in the original tree can transmit. Since it is possible to

potentially schedule a node that is at distance i − 1 and

a node at distance i simultaneously without interference

as long as the node at distance i is not a child of

the node at distance i − 1, it is interesting that even

without scheduling such non-interfering links, this policy

is optimal. For example, in Figure 1, we can potentially

simultaneously schedule B and E. However, this policy

does not allow such a schedule because in the equivalent

linear network, when R makes a transmission, Q cannot

make a transmission.

Let P be the class of all possible activation policies. The

proof that π0 is optimal for trees where the degree of the sink

is one is similar to Tassiulas’s proof for tandem networks.

Intuitively, the reason that π0 is optimal for such a large class

of trees (even though it is not a Maximal Matching policy)

is that the link from the sink’s child to the sink serves as a

bottleneck for all the packets in the system. Therefore, even

if we allow for a Maximal Matching based schedule, the

packets have to ultimately queue up at the sink’s child, and

get transmitted one after another.

Theorem 1. Consider the evolution of the system under policy

π0 and an arbitrary policy π ∈ P. Let X, X0 be the queue

length processes under π and π0 respectively when the system

starts from the same initial state under both policies. For all

t = 0, 1, ... we have
∑

i∈V

X0
i (t) ≤

∑

i∈V

Xi(t) a.s. (2)

We first provide some definitions and lemmas before going

into the proof of the theorem.

Definition: Let X, Y be the queue length processes when

the initial queue length vectors are X(0) = x, Y(0) = y

respectively, there are no exogenous arrivals, and policy π0

schedules link activations. We say that the vectors x and y are

related with the partial ordering ≺, and we write x ≺ y, if for

all t = 0, 1, ..., we have

l(X(t)) ≤ l(Y(t)), (3)

where l(x) =
∑

i∈V xi is the total number of packets in the

system when the state is x.

To each state x we define the departure times txi , i =
1, ..., l(x) and the positions dx

i , i = 1, ..., l(x) as follows.

Definition: Assume that the system is initially in state x,

there are no exogenous arrivals, and policy π0 schedules link

activations. Let {X(t)}∞t=1 be the corresponding queue length

process. The time txi is defined as

txi = min{t : t > 0, l(X(t)) ≤ l(x)− i}, i = 1, ..., l(x), (4)

and the position dx
i is defined as

dx
i = max{j + 1 :

∑

l:d(0,l)≤j

Xl(t) < i}, i = 1, ..., l(x). (5)

Note that the definitions have been appropriately modified for

our topology. The corresponding definitions for the equivalent

linear network will be exactly the same as in Definition 3.2 in

[2]. Let us now index the packets by an index i that denotes

the order in which the packets reach node 0 when the system

is in state x at t = 0, π0 schedules link activation, and there

are no exogenous arrivals. The departure time txi is the slot

by the end of which packet i reaches node 0, and the position

dx
i is the distance of the node (from node 0) at which packet

i was residing at t = 0. In the equivalent linear network, if

dx
i = k, then packet i was residing at node k at t = 0.

We now show that the departure times and the positions

for our topology are related in the same manner as in Equa-

tion (3.4) in [2].

Lemma 1. For all states x we have

txi =

dx
i i = 1

i dx
i = 1

max{txi−1 + 2, dx
i } i > 1, dx

i > 1
(6)

Proof: Consider the system operated under policy π0,

with initial state x and without arrivals. The time taken by

the first packet to exit the system is simply the distance of the

node (from node 0) at which it was residing at t = 0 because

it gets forwarded by one hop during each time slot. Therefore,

tx1 = dx
1 .

For a packet i such that dx
i = 1, the time taken by this

packet to leave the system is i since at each slot one packet will

be forwarded from node 1 (in the equivalent linear network,

and hence in the original tree) to node 0 until the time that

node 1 has no more packets to send. Therefore, in this case,

the packet i will reach node 0 at the end of slot i. Therefore,

if dx
i = 1, txi = i.

If i > 1 and dx
i > 1, we distinguish the following cases.

Case 1: dx
i − txi−1 ≥ 2.

At any slot t < txi−1, the packet i − 1 should reside in a

node j in the original tree such that d(0, j) ≤ txi−1−t because

it should reach the destination in txi−1− t slots, and cannot be

forwarded faster than one hop during each slot. Also, at time

t, the packet i should reside in a node m such that d(0,m) ≥
dx
i − t since it cannot move faster towards the destination than

one hop per slot. Therefore we have d(0,m) ≥ dx
i − t ≥

txi−1 − t+2 ≥ d(0, j) + 2. This implies that packet i− 1 will

be, at each slot t, at least two hops closer to the destination

than packet i in both the original tree as well as the equivalent

linear network. Therefore packet i will be the first packet in

its queue (according to our convention), and all the nodes in

the tree that are one hop closer to the destination than the

node at which packet i currently is have no packets in their

respective queues. Therefore, packet i will be forwarded by

one node towards the destination at each slot. Hence, packet i

will reach the destination by the end of slot dx
i , i.e., txi = dx

i .

Case 2: dx
i − txi−1 ≤ 1.

If i > 1 and dx
i > 1, then txi ≥ txi−1 + 2. This is because

any packet which is not residing in node 1 at t = 0, can reach

node 1 only when there are no packets left to schedule in

node 1, since node 1 is activated otherwise. Note that this is

true only when the root has one child. If the root has multiple

children, a packet can reach one of the root’s children even

when some other child of the root is transmitting its packet

to the root. This is one of the most important reasons why

all the proofs in [2] works for our topology. Node 1 serves

as a bottleneck. Hence, during the slot at which i − 1 leaves

the system, packet i will be in node 2 in the equivalent linear

network (corresponding to one of the children of node 1 in

the original tree) or further away from the destination, and

therefore it requires at least two additional slots in order to

reach the destination.

We now show that txi = txi−1 + 2. If packet i is forwarded

towards the destination by one node at each slot then it will

reach the destination by slot dx
i . However, this is impossible

since dx
i − txi−1 ≤ 1, and we need txi ≥ txi−1 + 2. This means

that at some slot, packet i is not forwarded from its node (say

node k). Suppose that packet i − 1 was residing at node j

during this slot. Then we must either have d(0, j) = d(0, k),
or d(0, j) = d(0, k)− 1, i.e., in the equivalent linear network

packet i− 1 is either in the same node with i or in the node

in front of i towards the destination. Therefore, at the slot at

which i was not forwarded and at all subsequent slots until

the time packet i − 1 leaves the system, packets i and i − 1
cannot be in two nodes m, n such that d(0,m)−d(0, n) > 2.

Therefore, two slots after the time packet i−1 reaches node 0,

packet i also reaches node 0. Thus, txi = txi−1 + 2.

Lemma 2. For any two vectors x and y, we have x ≺ y if

and only if

txi ≤ t
y
i+k, i = 1, ..., l(x), (7)

where k = l(y)− l(x).

Proof: Suppose that x ≺ y. We prove (7) by contradiction.

Let X(t), Y(t), t = 0, 1, ... be the queue length processes

when the initial queue length vectors are X(0) = x, Y(0) = y

respectively, there are no exogenous arrivals, and π0 schedules

link activations. If t
y
i+k < txi for some i, then by the end of slot

t
y
i+k, exactly i+k packets have departed from the system when

the initial state is y while less than i packets have departed

from the system when the initial state is x. Hence

l(Y(t
y
i+k)) = l(y)− i− k = l(x)− i < l(X(t

y
i+k)), (8)

which contradicts x ≺ y.

To prove the converse, suppose that (7) holds.

For an arbitrary slot t, let j be the packet that most recently

departed from the system when the initial state is y. If j ≤ k,

then clearly l(X(t)) ≤ l(Y(t)). If j > k, then since txj−k ≤ t
y
j ,

by time t at least j−k packets have departed from the system

with initial state x. Hence we have

l(X(t)) ≤ l(x)− j + k = l(y)− j = l(Y(t)), (9)

and hence x ≺ y.

We now show that if there are no exogenous arrivals, policy

π0 minimizes the sum of the queue lengths of all the nodes

in the system for each time slot.

Lemma 3. If we have x ≺ y, and i is an arbitrary activation

vector, then for u = x + Rg0(x) and z = y + Ri, we have u

≺ z.

Proof: We show that for all i = 1, ..., l(x) we have tui ≤
tz
i+l(z)−l(u) and thus from the previous lemma, we must have

u ≺ z.

Let l(y)− l(x) = k. We have four cases.

Case 1: l(u) = l(x), l(z) = l(y).
In this case, we need to show that tui ≤ tzi+k, ∀ i =

1, ..., l(u).
Since u results from applying policy π0, from the definition

of departure times, it immediately follows that

tui = txi − 1. (10)

We now show by induction on i that

t
y
i ≥ tzi ≥ t

y
i − 1. (11)

i = 1: The following hold.

t
y
1 = d

y
1

d
y
1 ≥ dz

1 ≥ d
y
1 − 1

The first equation follows from Lemma 1, and the second

follows from the fact that the first packet cannot travel more

than one hop in one slot. Therefore, we have

tz1 = dz
1 ≥ d

y
1 − 1 = t

y
1 − 1

tz1 ≤ d
y
1 = t

y
1 .

Thus, the result holds for i = 1.

By the induction hypothesis, assume that the result holds

for some i.

i+1: If dz
i+1 = 1, then tzi+1 = i+1, and t

y
i+1 = i+2 if the

packet i+1 was in node 2 in the equivalent linear network or

t
y
i+1 = i+ 1 if the packet i+ 1 was in node 1 and it was not

scheduled. Therefore, tzi+1 = t
y
i+1 or tzi+1 = t

y
i+1 − 1. Thus

the result holds when dz
i+1 = 1.

If dz
i+1 > 1, then tzi+1 = max{tzi + 2, dz

i+1}.
If the packet i+1 is forwarded by one node because of the

activation vector i, then dz
i+1 = d

y
i+1 − 1. Else, dz

i+1 = d
y
i+1.

Now, we have

t
y
i+1 − 1 = max{t

y
i + 2, d

y
i+1} − 1

= max{t
y
i − 1 + 2, d

y
i+1 − 1}

≤ max{tzi + 2, dz
i+1} = tzi+1

≤ max{t
y
i + 2, d

y
i+1} = t

y
i+1,

where the third relation follows because tzi ≥ t
y
i − 1 and

dz
i+1 ≥ d

y
i+1−1, and the fourth relation holds because tzi ≤ t

y
i

and dz
i+1 ≤ d

y
i+1.

Therefore by induction, the relation (11) holds. From the

relations (10), (11), and the fact that x ≺ y, it follows that

tui ≤ tzi+k, ∀ i = 1, ..., l(u).

Case 2: l(u) = l(x)− 1, l(z) = l(y).

In this case, we need to show that tui ≤ tzi+k+1, ∀ i =
1, ..., l(u).

Since one packet exits the system according to policy π0,

the i+ 1th packet in the previous slot now becomes the ith

packet. Therefore,

tui = txi+1. (12)

For z, the situation is identical to that of Case 1. Therefore,

the relation (11) holds. Therefore, it follows that tui ≤ tzi+k+1,

∀ i = 1, ..., l(u).

Case 3: l(u) = l(x)− 1, l(z) = l(y)− 1.

In this case, we need to show that tui ≤ tzi+k, ∀ i =
1, ..., l(u).

From Case 2 for u, we have tui = txi+1.

For z, we now show by induction that

t
y
i+1 ≥ tzi ≥ t

y
i+1 − 1. (13)

i = 1: We have tz1 = dz
1 ≤ d

y
2 ≤ t

y
2 . If t

y
2 = d

y
2 , then tz1 =

dz
1 ≥ d

y
2 − 1 ≥ t

y
2 − 1, and tz1 = dz

1 ≤ d
y
2 ≤ t

y
2 . Therefore, the

result holds in this case. On the other hand, it is also possible

that t
y
2 = d

y
2 + 1 if the second packet resided at node 2 at

the previous slot in the equivalent linear network. Since the

first packet was scheduled during this slot, the second packet

still remains at node 2. In this case, tz1 = dz
1 = d

y
2 = t

y
2 − 1.

Therefore, the relation (13) holds for the first packet in state

z.

Assume that it holds for some i by the induction hypothesis.

i+ 1: If tzi+1 = dz
i+1, then it follows that

tzi+1 = dz
i+1 ≤ d

y
i+2 ≤ t

y
i+2. (14)

If tzi+1 = tzi + 2, then

tzi+1 = tzi + 2 ≤ t
y
i+1 + 2 ≤ t

y
i+2. (15)

If t
y
i+2 = d

y
i+2, then

t
y
i+2 = d

y
i+2 ≤ dz

i+1 + 1 ≤ tzi+1 + 1. (16)

If t
y
i+2 = t

y
i+1 + 2, then

tzi+1 ≥ tzi + 2 ≥ t
y
i+1 + 2− 1 = t

y
i+2 − 1. (17)

From the four relations above, the relation (13) holds for i+1.

Therefore, by induction, it holds for all i.

The relations (13) and (12) imply that tui ≤ tzi+k, ∀ i =
1, ..., l(u).

Case 4: l(u) = l(x), l(z) = l(y)− 1.

In this case, we need to show that ∀i, tui ≤ tzi+k−1.

The case for u is identical to that in Case 1, and the case

for z is identical to that in Case 3. Hence, the result follows.

Thus, we have shown that u ≺ z.

We now show that the ordering ≺ is preserved even after a

packet arrives at any node in the network. To be precise, let ej
be the vector which has all its elements equal to zero except

for the element j which is 1. Then we have the following.

Lemma 4. If we have x ≺ y, then for all j ∈ V , we also have

x + ej ≺ y + ej .

Proof: First note that if a packet arrives at a node j in

the tree, then it arrives at node d(0, j) in the equivalent linear

network. For notational convenience, we represent d(0, j) as

simply j for the rest of this proof. Then the lemma means that

for all j ∈ {1, 2, ..., N}, we have x + ej ≺ y + ej .

Let u = x + ej , and z = y + ej . Since x ≺ y, l(y)− l(x) =
k ≥ 0. Thus, l(z)− l(u) = k.

We need to show that ∀i = 1, 2, ..., l(x) + 1

tui ≤ tzi+k (18)

Let m =

j
∑

l=1

xl + 1, and n =

j
∑

l=1

yl + 1.

Case 1: i < m, i+ k < n.

For all such packets, tui = txi , and tzi+k = t
y
i+k because the

transmission schedules of these packets are not affected by the

arrival of a packet at node j. Therefore, the relation (18) holds

for this case.

Case 2: i ≥ m, i+ k < n.

We have du
i ≤ dx

i ∀i = 1, ..., l(x) because if i < m, du
i =

dx
i , and if m < i ≤ l(x), du

i = dx
i−1 ≤ dx

i .

We want to show now that tui ≤ txi . We do this by induction.

i = 1: We have tu1 = du
1 ≤ dx

1 = tx1 . Thus, it holds for

i = 1.

Assume that it holds for some i by the induction hypothesis.

i + 1: If tui+1 = du
i+1 and txi+1 = dx

i+1, then since du
i+1 ≤

dx
i+1, we have tui+1 ≤ txi+1.

If tui+1 = tui + 2 and txi+1 = txi + 2, then it immediately

follows that tui+1 ≤ txi+1 since tui ≤ txi by the induction

hypothesis.

If tui+1 = du
i+1 and txi+1 = txi + 2, then we have txi + 2 ≥

dx
i+1 ≥ du

i+1 = tui+1.

If tui+1 = tui + 2 and txi+1 = dx
i+1, then we have dx

i+1 ≥
txi + 2 ≥ tui + 2 = tui+1.

Thus, the result holds for i+1. Hence, by induction, tui ≤ txi
∀i.

Also, from Case 1, for z, tzi+k = t
y
i+k when i + k < n.

Therefore, tui ≤ tzi+k for i ≥ m and i+ k < n.

Case 3: i ≤ m, i+ k ≥ n.

For this case, we give a proof by contradiction.

Suppose that for some i, tui > tzi+k.

Since i+ k ≥ n and i < m, we have

tzi+k ≥ dz
i+k ≥ j ≥ du

i , (19)

tui > tzi+k means that tui > du
i . Therefore, tui = tui−1 + 2. So

tui−1+2 > tzi+k ≥ tzi+k−1+2. This implies that tui−1 > tzi+k−1.

Iteratively substitute i = i−1 until either i = 1 or i+k < n.

If i = 1, then tu1 = du
1 . However, this contradicts tui > du

i

∀i. If i + k < n, then tzi+k = t
y
i+k and tui = txi for i < m.

However, tzi+k < tui then contradicts the fact that x ≺ y.

Hence tui ≤ tzi+k by contradiction.

Case 4: i > m, i+ k ≤ n.

Since i > m, we have du
i = dx

i−1. Similarly, when i+k > n

we have dz
i+k = d

y
i+k−1.

If i + k = n < l(z), dz
n ≤ d

y
n, and so tzn = max{tzn−1 +

2, dz
n} ≤ max{t

y
n−1 + 2, d

y
n} = t

y
n. Therefore, tzn ≤ t

y
n.

We now show that tzi+k ≤ t
y
i+k−1 when i+ k ≥ n.

For the base case, consider i+ k = n: Since tzn ≥ tzn−1 =

t
y
n−1, we have tzn ≥ t

y
n−1. Thus the result holds for i+k = n.

Assume that the result holds for i+ k = l > n.

Consider i+ k = l + 1: We have

tzl+1 = max{tzl + 2, dz
l+1} ≥ max{t

y
l−1 + 2, d

y
l } = t

y
l , (20)

since dz
l+1 = t

y
l and tzl ≥ t

y
l−1.

Thus the result holds for l + 1.

Therefore, by induction, tzi+k ≥ t
y
i+k−1 ∀ i+ k ≥ n.

We now prove the main result for Case 4 by contradiction.

Suppose that tui > tzi+k for some i.

If tui = du
i , then we have

txi−1 ≥ dx
i−1 = du

i = tui > tzi+k ≥ t
y
i+k−1. (21)

This clearly contradicts the fact that x ≺ y. This implies that

tui = tui−1 + 2.

If dz
i+k = 1, then i + k = n, and hence i = m (since the

packet arrives at node 1). Since we have i > m, we need to

have dz
i+k > 1. If this is the case, then tzi+k ≥ tzi+k−1 +2. So

we have

tui = tui−1 + 2 > tzi+k ≥ tzi+k−1 + 2. (22)

Therefore, tui−1 > tzi+k−1.

Iteratively substitute i = i−1 until either i = m or i+k < n.

If i = m, then tum−1 > tzi+k−1 which contradicts either Case 2

or Case 3 depending on whether i + k < n or i + k ≥ n

respectively. If i + k < n, then tui−1 > tzi+k−1 contradicts

Case 2.

Hence, the result is proven for this case by contradiction.

Since the four cases exhaustively include all possibilities,

the lemma follows.

We now proceed to the proof of Theorem 1.

Proof of Theorem 1:

Proof: For t = 0, we have X0(0) = X(0), and hence

X0(t) ≺ X(t) at t = 0. Assume that X0(t) ≺ X(t) is true for

some t. We show that it holds for t+ 1 as well. Let I(t+ 1)
be the activation vector under some policy π at t + 1. Then

from Lemma 3 we have

(X0(t) + Rg0(X
0(t))) ≺ X(t) + RI(t+ 1). (23)

The arrival vector A(t + 1) for the equivalent linear network

can be written as

A(t+ 1) =
N
∑

i=1

Ai(t+ 1)ei. (24)

Hence from Lemma 4 and the relation (23) we can see that

X0(t+ 1) = X0(t) + Rg0(X
0(t)) +

N
∑

i=1

Ai(t+ 1)ei

≺ X(t) + RI(t+ 1) +
N
∑

i=1

Ai(t+ 1)ei

= X(t+ 1).

Since we are only interested in the sum of all the queues,

the result for the equivalent linear network holds for the tree

topology as well.

IV. GENERAL TREE TOPOLOGIES

In this section, we analyze whether there exists a sample-

path delay optimal scheduling policy for general trees. We first

consider trees where the root has multiple children, and all but

one of the children are leaf nodes.

Consider the following policy πT
0 .

Policy πT
0 :

1) At any time slot t, if the root’s child that is not a leaf

node has a packet, then schedule the root’s child. Do

not schedule the other children of the root. Schedule the

rest of the tree according to policy π0. If all of the root’s

children are leaf nodes, pick any one of them that has a

packet to transmit, and schedule it. Do not schedule the

other children.

2) If the root’s child that is not a leaf node does not have

a packet, schedule any one of the root’s other children

that has a packet, and do not schedule the other children.

Schedule the rest of the tree according to π0.

Theorem 2. Policy πT
0 is a sample-path delay optimal

scheduling policy for trees where the root has multiple chil-

dren, and all but one of the children are leaf nodes.

Proof: We prove this theorem by induction on time

t = 0, 1, Specifically, we show that at any time slot t,

the number of packets that have exited the system by that slot

is maximum among all policies. Therefore, the sum of the

queues of all the nodes in the network is minimum at that

time slot.

t = 0: The number of packets that have exited the system

is zero, and this is maximum among all policies.

Induction hypothesis at time t: Suppose that the number of

packets that have exited the system by t is m according to

policy πT
0 , i.e., m is the maximum number of packets that

could have exited the system according to any policy.

t+ 1: There are two cases.

Case 1: At least one of the root’s children have a packet to

schedule.

In this case, according to πT
0 , exactly one of these children

will be scheduled, and the number of packets that exit the

system by t+1 is m+1. This is maximum since at most one

packet can exit during a time slot, and the maximum number

of packets that have exited the system by t is m.

Case 2: None of the root’s children have a packet to

schedule.

This means that all the packets from all the root’s children

that are leaf nodes have exited the system, and there are no

new arrivals at these nodes. Further, the branch corresponding

to the root’s child that is not a leaf node is scheduled according

to policy π0 at all time slots. Therefore, the number of packets

that have exited from this branch at any time slot is maximum

because of the optimality of π0. Hence, the maximum number

of packets that have exited the system by t+ 1 is also m.

Therefore, by induction, at each time slot, for any arrival

pattern, the number of packets that have exited the system is

maximum among all policies, and hence πT
0 is sample-path

delay optimal.

To conclude our analysis on sample-path delay optimal

policies for trees, we now show that for all other tree structures

there exists no sample-path delay optimal policy without

knowledge about future packet arrivals.

Theorem 3. There exists no causal sample path delay optimal

scheduling policy for the convergecasting problem when the

sink node has two or more non-leaf children, i.e., without

knowing future information, for such trees, there is at least

one type of traffic arrival pattern for which no sample path

delay optimal scheduling policy exists.

Proof: Let us begin by first considering the smallest tree

with multiple non-leaf children, as shown in Figure 2. Assume

that at t = 0, A and B have one packet each while C and

D have no packets. In the absence of information of future

traffic arrivals, we have no choice but to pick one of A or B

to schedule at t = 0.

A B

DC

S

Fig. 2. Tree with no sample-path delay optimal scheduling policy

Suppose we pick A to schedule. So at t = 1, A has no

packets left while B has one packet left. Now suppose that at

t = 1, we have an arrival at D. There are no arrivals at any

other node, and there are no future arrivals in the system. It

then takes an additional three time slots for the packets at B

and D to exit the system.

Suppose that we had picked B to schedule at t = 0. Then,

at t = 1, A has one packet left to schedule while B has no

packets left. In this case, at t = 1, A would have transmitted

to the root and D would have transmitted its packet to B

simultaneously. At t = 2, B would have transmitted this

packet to the root. Therefore, it just takes two time slots for

all the packets to exit the system.

Note that if we had picked B to schedule at t = 0 without

knowing about future arrivals, an arrival at C at t = 1 would

have ensured that picking B in the earlier time slot was sub-

optimal.

Thus, this example shows that even for this simple tree with

four nodes, there exists no causal sample-path delay optimal

policy. It is now straightforward to see that for a general tree

where the root has multiple children that are not leaf nodes,

there exists no causal sample-path delay optimal policy. This is

because such a tree would contain the above example as a part

of the structure. So by simply considering the arrival pattern

described above, and assuming that there are no packets and

arrivals in the rest of the tree, the same argument would apply.

Thus, from Theorem 2 and Theorem 3, we have completely

classified tree structures for which there exists sample-path

delay optimal policies, and for which there do not.

A. Discussion

While having a sample-path delay optimal policy is ideal,

they exist for very limited topologies. We now make a number

of interesting observations about other delay metrics studied

in the literature for tree structures.

• Large deviations metric: In [1], Venkataramanan et. al.,

have shown that for the convergecasting problem in

general trees, Tassiulas’s policy is delay optimal in the

large deviations sense. However, this policy is actually

not even evacuation time optimal. For instance, consider

the following tree (Figure 3) with four nodes A, B, C,

D, and a root. Suppose that A, B, and D have one packet

each. According to the policy in [1], either A or B can be

chosen to schedule arbitrarily during the first time slot.

However, one can easily see that if A were chosen to

schedule during the first time slot, the time to evacuate

the system is 3 slots. But if B were chosen to schedule

during the first time slot, the time to evacuate the system

is 4 slots.

• Evacuation time optimality: In [5], Florens et. al., have

proposed an evacuation time optimal policy for general

trees by prioritizing the branches of the tree according to

the time required to evacuate each individual branch.

Both these metrics are interesting since they provide optimal

scheduling policies (in their respective senses) for general

trees. However, the evacuation time metric does not consider

arrivals, and there exists instances where the policy based on

large deviations is not evacuation time optimal. Therefore, care

should be taken when designing scheduling algorithms based

on these policies.

A B

S

C

D

Fig. 3. Arbitrarily choosing branches is not evacuation time optimal

V. CONCLUSION

We studied sample-path delay optimal scheduling for con-

vergecasting in trees. We showed that sample path optimal

policies can only exist for tree structures where all, but one,

of the root’s children is a non-leaf node. We obtained a class

of sample-path delay optimal policies for all feasible tree

structures. Further, we showed that these are the only tree

structures for which there exists sample-path delay optimal

policies for the convergecasting problem. The fact that causal

sample path optimal policies exist in very limited cases is,

however, a limitation of this metric. This emphasizes the need

to study other “softer” metrics for delay. For instance, when

the stochastic nature of the arrival pattern is known, one could

study the expected delay. These are interesting problems for

future work.

REFERENCES

[1] V. J. Venkataramanan and X. Lin, “Low-complexity scheduling algorithm
for sum-queue minimization in wireless convergecast,” Purdue University,
Tech. Rep., 2010.

[2] L. Tassiulas and A. Ephremides, “Dynamic scheduling for minimum delay
in tandem and parallel constrained queue networks,” Annals of Operations

Research, 1993.
[3] T. Ji, E. Athanasopoulou, and R. Srikant, “Optimal scheduling policies

in small generalized switches,” in IEEE INFOCOM, 2009.
[4] G. R. Gupta and N. B. Shroff, “Delay analysis and optimality of schedul-

ing policies for multi-hop wireless networks,” To appear in IEEE/ACM

Transactions on Networking, 2010.
[5] C. Florens, M. Franceschetti, and R. J. McEliece, “Lower bounds on data

collection time in sensory networks,” IEEE Journal on Selected Areas in

Communications, 2004.
[6] J. C. Bermond, L. Gargano, and A. A. Rescigno, “Gathering with

minimum delay in tree sensor networks,” Lecture Notes in Computer

Science, 2008.
[7] L. Gargano and A. A. Rescigno, “Optimally fast data gathering in sensor

networks,” Lecture Notes in Computer Science, 2006.

