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Abstract—In this paper, we study the implication of wireless
broadcast for data aggregation in lossy wireless sensor networks.
Each sensor node generates information by sensing its physical
environment and transmits the data to a special node called the
sink, via multi-hop communications. The goal of the network
system is to compute a function at the sink from the information
gathered by spatially distributed sensor nodes. In the course of
collecting information, in-network computation at interm ediate
forwarding nodes can substantially increase network efficiency
by reducing the number of transmissions. On the other hand,
it also increases the amount of the information contained ina
single packet and makes the system vulnerable to packet loss.
Instead of retransmitting lost packets, which incurs additional
delay, we develop a wireless system architecture that exploits
the diversity of the wireless medium for reliable operations. To
elaborate, we show that for a class of aggregation functions,
wireless broadcasting is an effective strategy to improve delay
performance while satisfying reliability constraint. We provide
scaling law results on the performance improvement of our solu-
tion over unicast architecture with retransmissions. Interestingly,
the improvement depends on the transmission range as well as
the reliability constraint.

Index Terms—Data aggregation, lossy wireless networks, delay
performance.

I. I NTRODUCTION

Wireless sensor networks consist of a large number of
sensor nodes with limited resources of energy, transmission
power, network bandwidth, and computation power. Each
sensor node monitors the physical environment in its neigh-
borhood, collects data, and processes information. In many
applications, the goal of wireless sensor networks is to com-
pute a global function of the information gathered by spatially
distributed sensors at a special node called thesink. Multi-hop
communication is often used to relay the information from the
source node to the sinks.

Distributedin-network computation(or aggregation) [1] can
improve the communication efficiency of the system. It allows
for an intermediate node to participate in the computation of
the global function: a sensor node can collect information from
a subset of sensors and aggregate it by performing computa-
tions with partial information. Compared with previous end-
to-end information delivery paradigms, in which intermediate
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nodes simply relay the received information without change,
distributed in-network computation can result in significant
performance improvements in energy consumption, memory
usage, bandwidth, and delay.

In this paper, we focus on the delay performance of in-
network aggregation in lossy wireless networks. Under a
noisy wireless channel, maintaining the overall reliability of
the function computation while performing distributed com-
putations at intermediate nodes is a major challenge [1]–
[4]. Since the information contained in a single packet is
highly intensified after several in-network computations,a
packet loss can significantly impact the computation result,
and thus a higher level of protection is required for each packet
transmission. A packet can be protected by Error Correcting
Code (EEC) [5] or can be restored by retransmitting the lost
packet. In either case, additional delay is unavoidable. Inmany
applications, it is important to compute the global function in
a timely andreliable manner, and thus limiting the amount of
additional delay is important.

To this end, we develop a new network architecture for
in-network computation for a class of generalized maximum
functions. We focus on the delay performance of the function
computation subject to reliability constraint in lossy wire-
less environments. We show that aggregation with wireless
broadcast can substantially reduce the delay while satisfying
the reliability constraint. Our scaling law result clarifies the
relationship between delay performance, reliability, andtrans-
mission range. We also provide distributed algorithms and
evaluate their performance through simulations.

In-network aggregation has also been studied in many
other aspects [1]. The maximum achievable computation rate
for a class of functions has been investigated in [6]–[8].
Energy efficiency in lossy environments has been considered
in [3], [4], [9]. Time and energy complexity of distributed
computation has been provided in [10], [11]. Our work can
be differentiated from the previous work in that i) we focus
on the delay performance of in-network computation, ii) we
consider reliability constraints in lossy wireless networks, and
iii) we investigate the effect of wireless broadcast on the delay
performance.

The paper is organized as follows. We first describe the
system model in Section II. We provide scaling law results of
asymptotic delay bounds under different reliability constraints
and transmission ranges in Section III. In Section IV, we
develop distributed algorithms to implement in-network ag-
gregation that exploits wireless broadcasting in the presence
of interference. In Section V, we evaluate our schemes through
simulations. Finally, we conclude our paper in Section VI.
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II. SYSTEM MODEL

We consider a sensor networkG(V,E) having a setV
of sensor nodes and a setE of links, in which n sensor
nodes are deployed. The goal is to compute a global function
with information obtained from each sensor node. We assume
that the function should be calculated at a special node,
called the sink. Each sensor node not only generates its own
data but also relays others data to the sink via multi-hop
wireless communications. The wireless channel is assumed to
be lossy. A packet loss can be restored by retransmitting the
lost packet, which, however, results in additional delay. Since
many applications have both reliability and delay constraints,
we focus on the relationship between the reliability and the
delay performance and show how they can improve when in-
network aggregation is appropriately employed in the wireless
system.

We are interested in a class of functions that satisfy all the
following three properties.

• Symmetric: A function f is symmetric if f(~x, ~y) =
f(~y, ~x).

• Decomposable: A function f is decomposable if
f(~x, ~y) = f(f(~x), f(~y)).

• Componentwise Transitive: A function f is component-
wise transitive if [f(~x, ~y)]i = [f(~x)]i and [f(~y, ~z)]i =
[f(~y)]i imply that [f(~x, ~z)]i = [f(~x)]i, where[·]i denote
the i-th element of the vector.

We denote this class of functions byGeneralized Maximum
(GM) functions, since the final result corresponds to an
element (could be a vector element) of the sensed data. Some
examples includemax or min, ranging (i.e.,[min,max]), and
n-largest (or smallest) values. Many sensor network services
can be realized through this class of functions: intrusion
detection by collecting binary information, object tracking
by collecting n-closest locations to the object and their
distances, and multi-modal environmental monitoring (e.g.,
finding highest temperature with humidity exceeding a certain
threshold) [12], [13]. Also, in general wireless networks,this
type of functions might need to be calculated frequently to
update system parameters such as the largest node degree, the
longest queue length, the worst link quality, etc [14], [15].

The properties of the GM functions promote in-network
aggregation. Specifically, an intermediate node can collect
information from other sensor nodes, and instead of directly
relaying the received packets, it processes and aggregatesthem
into a unit of information, i.e., a packet. It then forwards the
computed value to the sink or to the next hop. Appropriate
use of in-network aggregation can significantly reduce the
amount of traffic generated over the network [3], [4], [6].
Another important feature of the GM functions is that they
allow duplicate data, i.e., inserting another copy of data does
not affect the function results. We actively exploit this feature
to battle against lossy wireless channels.

Our model is based on the following assumptions.
Assumption 1.The information generated at each sensor node
is exact without error.
Assumption 2.The message passing computation model [11]
is assumed, i.e., all the information has to be explicitly

transmitted and silence periods (including listening to others’
activities) cannot be used to convey information. Hence, ifa
sensor node does not transmit a packet, its information cannot
contribute to the global function computation.
Assumption 3.Time is slotted (each slot is equal to a sampling
period) and all sensor nodes are assumed to be synchronized.
Scheduling is perfect in TDMA network systems.
Assumption 4.Routing is fixed. We first consider a tree
topology rooted at the sink, which is a popular structure in
wireless sensor networks because information heads for a
fusion center (sink). We also modify the topology later to
incorporate wireless broadcast.
Assumption 5.The wireless channel between each pair of
transmitting and receiving nodes is assumed to be independent
across links and times, and modeled as a binary channel with
non-zero packet loss probabilityp. To avoid trivialities, We
assume thatp is bounded as0 < p ≤ p ≤ p < 1.

At time slot t, each sensor nodeν generates information
βν by sensing its physical environments. Our objective is
to calculate a GM function valuef(β1, β2, . . . , βn) at the
sink, that conveys the aggregated information from the sensor
nodes in a timely and reliable manner. Letβ∗ denote the
correct function value that has to be reported, i.e.,β∗ :=
f(β1, . . . , βn). The information value ofβj is said to be
critical if the function result withoutβj is different from
β∗, i.e, f(β1, . . . , βj−1, βj+1, . . . , βn) 6= β∗. For instance, let
f(·) = min{·} and β1 = 5, β2 = 2, and β3 = 9. Then
β2 has the critical information value becausef(β1, β3) =
5 6= 2 = f(β1, β2, β3). Note that if the information is
represented by a vector withm components, there can be at
mostm critical information values, since the component-wise
transitive property implies that a single critical information
determines a component of the function result. In the sequel,
for easy of exposition, we assume thatm = 1, andf(·) is a
max function with a single element. However, since the three
properties allow the critical information to be duplicatedand
to be aggregated in any order and in any intermediate node,
our analysis can be easily extended to any GM function with
m > 1, and as long asm is a constant, our asymptotical
results do not change. Let̂β denote the information of the
critical value. Sinceβ∗ = β̂ for m = 1, we useβ∗ and β̂
interchangeably in the remainder of the paper.

III. A SYMPTOTIC ANALYSIS OF THE DELAY BOUND

Let Ps denote the minimum probability that the sink com-
putes the function correctly. We study the asymptotic delay
performance of the sensor system for the following reliability
constraint:

1− Ps = O
(

1
c(n)

)

, (1)

i.e., there existsn0, c0 > 0 such that for alln > n0, 1−Ps ≤
c0

c(n) , wherec(n) is an increasing function ofn with c(n) → ∞
asn → ∞, indicating the speed of convergence rate at which
reliability is achieved as a function of the number of nodes.

A. Aggregation with unicast

We first consider a point-to-point communication system
with a tree topology [11], where a node has a parent and
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multiple children (except the root node and leaf nodes). Each
node obtains information in two ways: from its own sensor
and from its children. Once a node collects information from
all its children, it aggregates the information including its own
into a single packet using the GM function and transmits the
packet to its parent over a point-to-point communication link
(unicast). The procedure repeats from leaf nodes to the root.
We call this network architecture as aggregation with unicast
and denote it byU.

Since routes follow the tree structure rooted at the sink, each
nodeν has a unique parentµ(ν). Let p denote the probability
of loss for transmission over link (ν, µ(ν)). Let ru(n) ≥ 0
denote the maximum number of retransmissions allowed at
each link, and letPs(ν) denote the probability of success over
link (ν, µ(ν)) when success occurs by taking the maximum
number of allowed retransmissions. We can obtainPs(ν) as

Ps(ν) = 1− Pr {all transmissions fail}
= 1− p1+ru(n).

(2)

We define the depthd(ν) as the number of hops between
nodeν and the sink. Letd∗(n) denote the maximum depth
over all sensor nodes, i.e.,d∗(n) := maxν∈V d(ν). Then,Ps,
the worst-case probability of success, is given by the success
probability that the information of the critical value arrives at
the sink through the longest path. Lettingν̂ denote the node
that generates the information̂β of the critical value, we have

Ps = min
ν̂=ν;ν∈V

d(ν̂)
∏

k=1

Ps(νk) =

d∗(n)
∏

k=1

Ps(νk), (3)

whereν1 := ν̂ and νk+1 := µ(νk) for all k > 1. The last
equality holds because in the worst-case,ν̂ has the largest
depthd∗(n). By substituting (2) into (3), we can obtain the
following inequality:

c1 · d∗(n) · p1+ru(n) ≤ 1− Ps ≤ c2 · d∗(n) · p1+ru(n), (4)

wherec1 andc2 are some constant. From the left side of (4)
and from the reliability constraint of (1), we have

1 + ru(n) ≥ c3 · log(d∗(n) · c(n)) + c4,

for some constantc3 and c4. Also, from the right side
of (4), the inequality with some constant is sufficient for
the reliability constraint. Hence, a scheme that satisfies the
reliability constraint (1) should have

ru(n) ≥ Θ(log(d∗(n) · c(n))), (5)

and the bound is tight in the sense that some scheme with the
equality can satisfy the reliability requirement.

We now consider the delay caused by retransmissions to
achieve the given reliability constraint. Estimating the delay
by the number of transmissions, the worst-case delayD∗

u can
be presented asD∗

u = minru(n){d∗(n)·(1+ru(n))}. From (5),
we havemin(1+ru(n)) = Θ(log(d∗(n)·c(n))), which implies
that a packet should be transmitted at leastΘ(log(d∗(n)·c(n)))
times to satisfy the reliability constraint. Hence, we obtain the
worst-casedelay under aggregation with unicast as

D∗
u = Θ(d∗(n) · log(d∗(n) · c(n))). (6)

B. Aggregation with wireless broadcast

In this section, we propose a new network architecture with
wireless broadcast to improve the delay performance while
achieving the same level of reliability. We explicitly exploit
diversity from wireless broadcast. We first describe the system
architecture and then analyze its delay performance.

We modify the tree structure in Section III-A by allowing
nodes to broadcast a packet tomultiple parents.
Assumption 4.1.Each node (at depthd) has at leastx(n)
parents1 (at depthd − 1), and transmits a packet through the
wireless broadcast channel to all parents (1+rb(n)) times. At
the root, we assume that the sink hasx(n) antennas and it can
process signals from multiple antennas.
In this architecture, we say that a nodesuccessfully transmits
a packet if the broadcasted packet is successfully receivedby
one of x(n) parents. Note that each packet contains aggre-
gated information abstracting all the information successfully
collected by the transmitter. Due to the properties of the
GM functions, it is sufficient that each node successfully
transmits the aggregated information toone of its parentsin
order to ensure that the information̂β of the critical value is
successfully delivered to the sink. We call this architecture as
aggregation with broadcast and denote it byB.

The intuition can be better described using Fig. 1. Assuming
that links are bidirectional, the dotted lines in the figure is a
link between two nodes, and arrows indicate a transmission
from a child to a parent. A failed transmission is marked by
a cross. Fig. 1(a) illustrates that two transmissions from node
2 fail under U. On the other hand, Fig. 1(b) shows that a
single broadcast can transmit the packet to node 6 successfully.
Hence,U requires four transmissions to deliver information B
to the sink, whereasB needs two transmissions.

Note that the aggregation with broadcastB appears to be a
little like flooding, but there are significant differences. While
flooding is very ineffective because of broadcasting multiple
duplicate packets,B reduces this inefficiency by in-network
aggregation. Moreover, it takes advantage of the diversityof
wireless broadcast, which is not exploited in flooding.

We now estimate the worst-case probabilityPs of successful
function computation underB. Assuming independent packet
losses over links (Assumption 5), a packet transmission from
nodeν is successful with probability

Ps(ν) ≥ 1− px(n)·(1+rb(n)), (7)

where rb(n) is the maximum number of retransmissions.
Again, since the information̂β of the critical value has to
be delivered via at mostd∗(n) hops to reach the sink, the
guaranteed probabilityPs of a successful information delivery
can be represented by

Ps ≥ min
ν̂=ν;ν∈V

d(ν̂)
∏

k=1

Ps(νk) =

d∗(n)
∏

k=1

Ps(νk), (8)

1This implies that there are at leastx(n) disjoint paths from a node to the
sink. Since there arex(n) different first-hop nodes from the node’s parents
and each of these first-hop nodes hasx(n) parents, we can find at leastx(n)
disjoint two-hop paths. Then by induction, we can show that there are at least
x(n) disjoint paths to the sink.
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(a) Aggregation with unicast (U )

BCD

(b) Aggregation with wireless broadcast (B)

Fig. 1. Transmissions over lossy wireless links. Each transmission is denoted by an arrow, and a failed transmission is denoted by a cross at the end of the
arrow. Under aggregation with unicast, it needs four transmissions for information B to be successfully delivered to the sink, while it needs two transmissions
under aggregation with broadcast.

whereν1 := ν̂ and νk+1 is one of parents ofνk. Note that
unlike U, the first equality in (3) is changed to an inequality
in (8) because the information̂β can take multiple (at least
x(n)) paths to the sink. From (7), we can obtain

1− Ps ≤ d∗(n) · px(n)(1+rb(n)). (9)

Then forc5 := −1
log p and a constantc6, the following inequality

suffices to satisfy the reliability constraint (1):

x(n) · (1 + rb(n)) ≥ c5 · log(d∗(n) · c(n)) + c6. (10)

Note that if each node broadcasts its packet toc5 log(d
∗(n)·

c(n))) parents, the reliability constraint (1) can be satisfied
with rb(n) = 0. Since the delay boundD∗

b can be represented
asD∗

b = minrb(n){d∗(n) · (1 + rb(n))}, we have

D∗
b ≤ Θ

(

d∗(n) ·max{1, log(d
∗(n)·c(n))
x(n) }

)

. (11)

C. Performance in geometric networks

We now consider a popular scenario in which sensor nodes
are randomly deployed in a geometric space, and evaluate the
delay performance of aggregation schemes with unicastU and
with broadcastB. We derive the gain ofB overU for geometric
networks, where the reliability constraint and transmission
range are a function of the number of nodes. We show that in
general a higher gain can be achieved with a stronger reliability
requirement and a larger transmission range.

We first start with the gain for the previous (non-geometric)
tree network. We define the maximum delay gain ofB over
U asG∗ := D∗

u/D
∗
b . From (6) and (11), we have2

G∗ :=
D∗

u

D∗
b

= Ω





d∗(n) · log(d∗(n) · c(n))
d∗(n) ·max{1, log(d

∗(n)·c(n))
x(n) }





= Ω

(

x(n) log(d∗(n) · c(n))
x(n) + log(d∗(n) · c(n))

)

.

(12)

Suppose that the network has depthd∗(n) = logn with
the reliability constraintc(n) = logn. From (6) and (11),

2f(n) = Ω(g(n)) means that there exists constantsn̄, c̄ > 0 such that for
all n ≥ n̄, f(n) ≥ c̄g(n).

we haveD∗
u = Θ(logn · log logn) under U, and D∗

b ≤
Θ(logn ·max{1, log logn/x(n)}) = Θ(logn) underB when
x(n) = Θ(log log n) andrb(n) = O(1). Hence, if each node
can broadcast toΘ(log logn) parents,B outperformsU by
G∗ = Ω(log logn).

However, the achievability ofx(n) = Θ(log logn) depends
on the topology of the underlying network. In geometric
networks, bothd∗(n) andx(n) are related to the topological
structure and we need to incorporate some topological notion
into our analysis. To this end, we study the delay performance
of aggregation schemes in random networks, where nodes
are uniformly placed, subject to reliability constraint. In our
analysis, we do not take into account edge effects, assuming
that all nodes have the same order of parent nodes3. Note that
in sensor networks, most traffic heads for the sink. Hence, by
carefully locating the sink, there would be few transmissions
on the edge of the network. The assumption can be further
supported by our development of a distributed algorithm in
Section IV.
Assumption 4.2.Given a network ofn sensor nodes uniformly
and independently distributed on a disk of radius1, each node
has an identical transmission ranget(n) and has the same
order of parentsx(n) The sink is located at the center with
x(n) antennas. Straight-line routing has been employed, thus
achievingd∗(n) = 1

t(n) , and all the paths from a node to the
sink have asymptotically the same length. In the next section,
we show that this can be achieved by a simple routing scheme.

Under aggregation with unicastU, the delay bound directly
comes from (6). By replacingd∗(n) with 1

t(n) , we have

D∗
u = Θ

(

1

t(n)
log

c(n)

t(n)

)

. (13)

On the other hand, under aggregation with broadcastB, we
have x(n) ≤ Θ(nt(n)2) because each node hasnt(n)2

neighboring nodes in its transmission range. We can achieve
the equality by setting the parents of each node to the set of

3If the nodes are uniformly distributed in space, they asymptotically have
the same order of neighbors [16]. Then, as shown in Section IV, it is not hard
to develop a scheme, under which each node asymptotically have the same
order of parents.
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nodes within a sector of its transmission range (to the direction
of the sink). Then, from (11) andd∗(n) = 1

t(n) , we can obtain
the delay bound as

D∗
b ≤ Θ

(

max

{

1

t(n)
,

1

nt(n)3
log

c(n)

t(n)

})

. (14)

From (13) and (14), we can present the gainG∗
geo of B over

U in geometric networks as

G∗
geo :=

D∗
u

D∗
b

= Ω





nt(n)2 · log c(n)
t(n)

nt(n)2 + log c(n)
t(n)



 . (15)

As an example, we consider a random geometric network
with minimal connectivity. It has been shown in [17] that

t(n) should be at leastΘ(
√

logn
n ) for the network to be

asymptotically connected with high probability. Usingt(n) =

Θ(
√

logn
n ), we haved∗(n) = Θ

(
√

n
log n

)

. Suppose that

c(n) = logn, i.e., the reliability requirement enforces that
1 − Ps = O( 1

log n ). In this case, the delay bound ofU can
be written asD∗

u = Θ(
√
n logn) from (13). For B, it

suffices to satisfyx(n)(1 + rb(n)) = Θ
(

log
(

n·c(n)
log n

))

to
achieve the same level of reliability. Since each node can have
x(n) = Θ(nt(n)2) = Θ(logn) parents, the condition can be
satisfied withrb(n) = O(1) when c(n) = logn. Further, if
x(n) ≥ c5 logn, there is no need of retransmission underB.

Hence, we can obtain the delay boundD∗
b = O

(
√

n
log n

)

and the gainG∗
geo = Ω(logn). Note thatnt(n)2 = logn is

the number of nodes in the transmission area of a node. This
implies thatB can potentially achieve a gain in delay as large
as the diversity gain of wireless broadcast.

In general, from (15), the gain depends on botht(n) and
c(n). We tabulate the gains for various network environments
in Table I. The first column shows that the gain is dominated
by the broadcasting areas in multi-hop networks with minimal
connectivity. The last column shows that the gain is dominated
by the reliability constraint in single-hop networks. The results
also show that we can improve the delay performance by
exploiting multicast transmissions, with a smaller transmission
range when a low level of reliability is required (i.e., when
c(n) ≤ n), and with a larger transmission range when a high
level of reliability is required (i.e., whenc(n) ≥ n).

TABLE I
GAINS (D∗

u/D
∗

b
) OFB OVERU UNDER VARIOUS TRANSMISSION RANGES

AND RELIABILITY CONSTRAINTS .

t(n) =
√

logn
n

t(n) =
1√
log n

t(n) = 1

c(n) = logn Ω(logn) Ω(log logn) Ω(log logn)

c(n) = n Ω(logn) Ω(logn) Ω(logn)

c(n) = expn Ω(logn) Ω( n
logn ) Ω(n)

IV. D ISTRIBUTED ALGORITHMS

In this section, we develop a practical solution for aggrega-
tion with broadcast using a tiered routing structure. Although

the tiered structure has appeared in the literature for light-
weight routing [18] and efficient sleep/wake scheduling [19],
[20], the purpose of our design is quite different. Unlike [18]–
[20], we assume that wireless links are lossy, and that the
network has a specific goal of computing a GM function. By
exploiting the diversity of the wireless medium, we intend
to improve the delay performance while satisfying reliability
constraint.

We first describe our solution, and show that the algorithm
achieves the delay performance of (14). To this end, we
show that under the algorithm, each sensor node has at least
Θ(nt(n)2) parents and the maximum hop distance to the
sink is at mostΘ( 1

t(n) ). We extend our schemes to resource
constrained networks, and revisit performance analysis inthe
presence of wireless interference. We close this section with
development of a hybrid scheme that can combine the unicast
and the broadcast architecture.

A. Algorithm with tiered structure

We assume thatn wireless sensor nodes are uniformly
deployed over a disk of radius1. Our results can be extended
to more general networks of different sizes and topologies,
which impact on our analysis by a constant factor and do not
affect our scaling results. Under Assumption 4.2, each node
has an identical transmission range oft(n), and we divide
the networks into 1

δt(n) circular tiers as shown in Fig. 2, with
0 < δ < 1. Each tier has an identical width ofδt(n). Let Ti

denote the set of nodes in thei-th tier, which is an area within
distance of(δt(n) · (i − 1), δt(n) · i] from the sink. The sink
is the only node inT0.

The network is a time-slotted TDMA system. At the begin-
ning of each time slot, each sensor node generates a packet
with the sensed information. A time slot is further divided
into mini-slots and in each mini-slot, a single packet can
be transmitted. LetDb denote the delay performance of the
algorithm, which is estimated in the number of transmissions,
i.e., mini-slots for the sink to compute the function.

Routing is simplified using the tiered structure; Every node
µ in Ti is a parent of nodeν in Ti+1 if its distance is no greater
thant(n). Transmissions are scheduled from the outermost tier
to the sink tier-by-tier one at a time, so that nodes inTi can
transmit only after all nodes inTi+1 finish their transmissions.
We group nodes in each tier into mutually exclusive subsets
such that all nodes in a subset can transmit simultaneously.Let
H(i, j) denote thej-th subset inTi, and lethi denote the total
number of subsets in each tierTi such that∪hi

j=1H(i, j) = Ti.
Clearly, all nodes inTi can finish asingle transmission inhi

mini-slots. If there is no interference between simultaneous
transmissions within a tier, we will have a single group with
hi = 1 for all tier i. The reason that we introduce grouping
will become clearer in the next section when we take into
account wireless interference. We will have the total delayDb

to compute the function as

Db =

1/δt(n)
∑

i=1

hi(1 + rb(n)). (16)
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i

Fig. 2. Network with tiered structure.

Algorithm 1 Distributed aggregation with wireless broadcast.

for i = 1
δt(n) to 1 do

for j = 1 to hi do
Each nodeν in H(i, j) broadcasts its (aggregated)
information(1 + rb(n)) times.
if nodeµ ∈ Ti−1 receives the packetthen

Node µ does aggregation and updates its informa-
tion.

end if
end for

end for

The overall algorithm proceeds as follows: At the
beginning of every time slot, each node originates
a packet with sensed information. Nodes inH(i, j)
broadcast their packets(1 + rb(n)) times in decreasing
order of i and increasing order of j, such as
H( 1

δt(n) , 1), H( 1
δt(n) , 2), . . . , H( 1

δt(n) , h 1
δt(n)

), H( 1
δt(n) −

1, 1), H( 1
δt(n) − 1, 2), . . . , H(1, h1). Note that with this

ordering, nodes inTi start their transmissions after all nodes
in Ti+1 finish transmissions. Then nodes inTi who receive
a packet from a node inTi+1 do aggregation using the GM
function, and update their packet if necessary. The detailed
algorithm is as shown in Algorithm 1.

Now we show that under Algorithm 1, each node has at
leastΘ(nt(n)2) parents and the maximum hop distance from
a node to the sink isΘ( 1

t(n) ). Then the minimum number of
parentsx(n) can be bounded as follows. Suppose that nodeν
is located inTi as shown in Fig. 3. The number of parents of
nodeν in Ti−1 is no smaller than the number of nodes in the
shaded area. For each nodeν ∈ V , there existsδ < δν < 1
such that the distance betweenν and the shaded area isδνt(n).
Let δ∗ := maxν∈V δν . Since nodes are uniformly distributed
with density n

π , it can be easily shown that the number of
nodes in the shaded area is bounded below by4

x(n) ≥
(

cos−1 δ∗

π
− δ∗

√

1− δ∗2
)

nt(n)2

π
= Θ(nt(n)2).

(17)

4Although we implicitly assume that the shaded area is completely included
in Ti−1, the same order results can be obtained when the shaded area stretches
to inner tiers.

Fig. 3. Parents (inTi−1) of nodeν (in Ti) is located in the shaded area.

Since each node has at leastΘ(nt(n))2 parents, Algorithm 1
can achieve the required reliability (1) by satisfying (10)with
somerb(n) = Θ(1).

Further, since each tier has the widthδt(n) and a packet
is transmitted tier-by-tier, there are at most1δt(n) tiers and we
have the maximum number of hops to the sink as

d∗(n) =
1

δt(n)
= Θ

(

1

t(n)

)

. (18)

Hence, from (17) and (18), Algorithm 1 achieves the delay
performance (14) and the gain (15) with somerb(n) = Θ(1).
However, this can be achieved only when there is no interfer-
ence between simultaneous transmissions and all the nodes in
each tieri belong to the same group withhi = 1.

B. Performance in the presence of interference

In Section III, we have analyzed the performance (e.g., (15)
and Table I) without considering wireless interference. How-
ever, if the network is resource-constrained and has limited
frequency channels, then wireless interference will restrict the
number of simultaneous transmissions, e.g.,hi of Algorithm 1,
and this has to be factored into calculation of the gains.
Assumption 6.We consider a protocol model for the interfer-
ence constraints [16], where two links within two times of
transmission range cannot transmit simultaneously.
Multiple nodes within a tier can transmit simultaneously ifthe
distance between any two of them is greater than2t(n). We
show thathi = Θ(nt(n)2), and obtain the delay performance
of Algorithm 1 in the presence of wireless interference.

We first analyze the delay performance of Algorithm 1 by
providing an algorithm that multiple nodes in a tier can be
scheduled without interference. Then we compare the solution
with a realization ofU, which appears in [11] witht(n) =
√

logn
n in a lossless network, and extended accordingly. We

evaluate their performance and clarify the improvement of
B over U in different network settings.

From (16), we need to estimatehi to obtainDb, which is
determined by the scheduling policy within a tier. To this end,
we first estimate|H(i, j)|, whereH(i, j) is the subset of nodes
in Ti that are scheduled simultaneously, and| · | denotes the
cardinality of the set. We partitionTi into subsets{Cm

i } as
shown in Fig. 4. Note that since each cellCm

i has a width
more thant(n) at the boundary of the inner tier, there are at
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dt(n)

t(n)

Ci
m-2

Ci
m-1

Ci
m

Ci
m+1

Fig. 4. Partition{Cm

i
} of Ti.

most⌈ 2π(i−1)δt(n)
t(n) ⌉ cells, where⌈a⌉ is the closest integer no

smaller thana. Let H(i, j) include a node from every three
cells, i.e.,H(i, j) has a node from cellsCm

i , Cm+3
i , . . . , so on.

Since any two nodes inH(i, j) are separated more than2t(n),
they do not have any common parent and their transmissions
do not interfere with each other. Moreover, since all cells has
the same number of nodes (possibly except one cell, which
may have a smaller number of nodes), the number of nodes
in eachH(i, j) is identical and would be about a third of the
number ofCm

i . Specifically,

|H(i, j)| =
⌊

1

3

⌈

2π(i− 1)δt(n)

t(n)

⌉⌋

= ⌊ 1
3⌈2π(i−1)δ⌉⌋, (19)

for all i > 1, where⌊a⌋ is the closest integer no greater than
a. The number of nodes inTi can be bounded by

2π(i− 1)δt(n) · δt(n) · n
π
≤ |Ti| ≤ 2πiδt(n) · δt(n) · n

π
, (20)

for all i > 1. Since nodes are uniformly distributed, we can
obtain from (19) and (20) the number of mini-slotshi needed
for all nodes inTi to make a single transmission as

hi = Θ

( |Ti|
|H(i, j)|

)

= Θ(nt(n)2),

for all i > 1. For i = 1, it is clearh1 = Θ(nt(n)2) because
|T1| = nδ2t(n)2. Hence, we havehi = Θ(nt(n)2) for all i.
From (10) and (16), we obtain

Db =

1/δt(n)
∑

i=1

hi(1 + rb(n))

= Θ

(

1

δt(n)
· nt(n)2 · (1 + rb(n))

)

= Θ

(

nt(n)

(

1 +
1

nt(n)2
log

c(n)

t(n)

))

.

(21)

Remarks:Intuitively, each tier has widthΘ(t(n)) and thus
includesΘ(nt(n)) nodes. Since we can schedule a set of
nodes, where distance between any two nodes is no smaller
than t(n), the number of scheduled nodes will be at most
Θ(1/t(n)). Hence, it takes at leastΘ(nt(n)2) mini-slots to
finish transmissionsin each tier. We can obtain the above
equation by multiplying the termnt(n)2, which explains the
wireless interference, to (14).

Now we consider the realization ofU presented in [11].

The algorithm is designed in lossless networks with minimal

transmission range for connectivity, i.e.,t(n) =
√

logn
n , and

shown to be optimal. We extend it into lossy networks with
general transmission ranget(n) as follows:

1) Among sensor nodes, there areΘ( 1
nt(n)2 ) nodes who

locally collect information from its neighbors and do
aggregation. They can be placed such that they form a
tree with depthΘ( 1

t(n) ) and nodes of the same depth do
not interfere with each other.

2) At the beginning of each time slot, each node transmits
its packet over a point-to-point communication link to
the nearest collecting node. Due to retransmissions for
lost packets, it takesΘ(nt(n)2(1 + ru(n))) times.

3) After the above procedure, all information is now located
in collecting nodes. Then, each collecting node, starting
from leaf node, transmits packet to its immediate parent
up to (1 + ru(n)) times. After receiving all packets
from children, each collecting node does aggregation
and transmits the data to its parents. This procedure takes
Θ( 1

t(n) (1+ru(n))) times until all information arrives at
the sink.

From the above and (5), the algorithm has the delay perfor-
mance

Du = Θ

((

nt(n)2 +
1

t(n)

)

(1 + ru(n))

)

= Θ

((

nt(n)2 +
1

t(n)

)

log
c(n)

t(n)

)

.

(22)

Note that the wireless interference is incorporated in the first
term. Unlike Algorithm 1, it is added to (13) instead of being
multiplied. This is because the interference matters only when
nodes transmit packets to collecting nodes. On the other hand,
in Algorithm 1, the interference remains through the procedure
because it continuously exploits the wireless broadcast.

From (21) and (22), the gain can be obtained as

G = Θ





(1 + nt(n)3) log c(n)
t(n)

nt(n)2 + log c(n)
t(n)



 .

Table II summarizes the gain of Algorithm 1 over the
instance ofU in the presence of wireless interference for
various network settings. Algorithm 1 outperforms the instance
of U in most cases. However, in some cases, e.g.,c(n) = logn
and t(n) = 1√

log n
, the instance ofU has better delay

performance than Algorithm 1. Such a case occurs when either
of the following two conditions holds:

1) log c(n)
t(n) < 1

t(n) , if t ≥ 1
3
√
n

,

2) log c(n)
t(n) < nt(n)2, if t ≤ 1

3
√
n

.
Note that poor delay performance could be caused either

by a limited number of simultaneous transmissions due to
wireless interference or by a large number of retransmissions
required for reliability. Although Algorithm 1 exploits user
and path diversity improving delay performance by reducing
the number of retransmissions, the improvement may not be
significant due to wireless interference. Table II shows that
when the transmission range is small, Algorithm 1 does not
perform very well since the delay from interference dominates.
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In contrast, when the transmission range is large, Algorithm 1
can improve the delay performance substantially, while the
gain depends on the reliability constraint. The results imply
that broadcasting is more useful when a larger transmission
range is required, e.g., due to topological restriction or delay
deadline of sensed data.

TABLE II
GAINS OF ALGORITHM 1 OVER AN INSTANCE OFU UNDER VARIOUS

WIRELESS STRUCTURES AND RELIABILITY CONSTRAINTS.

t(n) =
√

logn
n

t(n) =
1√
log n

t(n) = 1

c(n) = logn Θ(1) Θ( log logn√
logn

) Θ(log log n)

c(n) = n Θ(1) Θ(
√
logn) Θ(logn)

c(n) = expn Θ(1) Θ( n
(
√
log n)3

) Θ(n)

It is also worthwhile noting that when there is no loss

in links and t(n) =
√

logn
n , Algorithm 1 has the delay

of Θ(
√
n logn) and the instance ofU achievesΘ(

√

n
logn ).

Hence, the instance ofU is better in lossless networks with
minimal connectivity.

C. A hybrid scheme

Motivated by the cases that the instance ofU outperforms
the instance ofB, we consider a hybrid method that blends
U andB. Under the hybrid scheme, the information obtained
by an individual sensor node is collected by some special
nodes called collecting nodes, and these collecting nodes
are responsible for data aggregation and information delivery
to the sink. The scheme seems similar toU, but there are
important differences in that all packet transmissions are
done by wireless broadcast and that (uniformly distributed)
collecting nodes can interfere with each other. We first describe
the implementable algorithm and provide a sufficient condition
to satisfy the reliability constraint. Then, we analyze thedelay
performance and the gain of the hybrid method.

We use the tiered structure of Algorithm 1.
Assumption 4.2.1In addition to Assumption 4.2, we further
assume that among all sensor nodes, there are collecting nodes
that are uniformly deployed over the network. Each node
has at leasty(n) ∈ [1, nt(n)2] collecting nodes within its
transmission area.
The algorithm consists of two phase:

1) Phase 1: Each non-collecting node broadcasts its packet
(1 + rb1(n)) times. All nearby collecting nodes receive
the packet and do aggregation.

2) Phase 2: From the outermost tier, each collecting node
in Ti broadcasts its packet(1+ rb2(n)) time. Collecting
nodes inTi−1 receive the packet and do aggregation.
This procedure repeats tier-by-tier as Algorithm 1.

Remarks:The algorithm has some similarity with the so-
lution in [11], which, however, operates with unicast, does
not take into account packet losses, and requires specific
placement of collecting nodes.

Sufficient condition for the reliability constraint:
Letting Ps1 and Ps2 denote the probability of successful

packet transmission in phase 1 and at each tier in phase
2, respectively. The probabilityPs of successful delivery of
critical information value can be written as

Ps ≥ Ps1 ·
d∗(n)
∏

k=1

Ps2

≥ (1− py(n)·(1+rb1(n))) · (1 − py(n)·(1+rb2(n)))d
∗(n)

≥ 1− py(n)·(1+rb1(n)) − d∗(n) · py(n)·(1+rb2(n)).

To simplify equations, we drop(n) in the sequel. Usingd∗ =
Θ(1t ), we obtain

1− Ps ≤ Θ
(

1
c

)

,

if y · (1 + rb1) ≥ Θ(log c) andy · (1 + rb2) ≥ Θ(log
c

t
).

(23)

Hence,y·(1+rb1) ≥ c5 log c andy·(1+rb2) ≥ c5 log
c
t with

c5 = −1
log p (and somerb1 = Θ(1), rb2 = Θ(1)) are sufficient

conditions to satisfy the reliability constraint (1).

Delay performance:
Let Dh denote the delay bound of the hybrid scheme.

Letting Dh1 and Dh2 denote the delay incurred by phase
1, and the delay incurred by phase 2, respectively, we have
Dh = Dh1 +Dh2.

Using the techniques provided in the previous sections so
far and from (23), the following can be easily shown

Dh1 = Θ

(

nt2 ·
(

1 +
1

y
log c

))

,

Dh2 = Θ

(

y

t
·
(

1 +
1

y
log

c

t

))

,

where inDh1, the termnt2 is the time for all non-collecting
nodes to broadcast a packet and the following(1 + 1

y log c)
is required for retransmissions, and inDh2, the term y

t is
the time for collecting nodes (y) in a single tier to broadcast a
packet multiplied by the number of tiers (1

t ), and the following
(1 + 1

y log c
t ) is required for retransmissions. Then we obtain

Dh = Θ

(

nt2 +
y

t
+

nt2

y
log c+

1

t
log

c

t

)

. (24)

The gainGh of the hybrid scheme of the instance ofU can
be presented from (22) as

Gh :=
Du

Dh
= Θ

(

(

nt2 + 1
t

)

log c
t

nt2 + y
t + nt2

y log c+ 1
t log

c
t

)

. (25)

We denoteG,N ,D respectively, as

G =
N
D :=

(

nt2 + 1
t

)

log c
t

nt2 + y
t + nt2

y log c+ 1
t log

c
t

.

Differentiating both sides byy, we obtain

dG
dy

=
N
D2

·
(

nt2

y2
log c− 1

t

)

.

Note that the sign ofdGdy is determined by
(

nt2

y2 log c− 1
t

)

,
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(c) Loss rate with delay constraint.

Fig. 5. Loss rate and delay of information delivery. The lossrates of aggregation with unicast improves with the number of retransmissionsru in Fig. 5(a).
However, the increase ofru leads to higher delay performance in Fig. 5(b). In contrast,there is no retransmission under the broadcast-based scheme (rb = 0)
and under the unicast-based scheme withru = 0. Thus their delays remain constant regardless of the loss rates. When accounting for information delivery
within delay bound (min +2 unit times, i.e.,2ĥ), broadcasting without retransmissions shows better performance than unicast with retransmissions.

which is a monotonically decreasing function ofy ∈ [1, nt2].

Hence, dG
dy < 0 if

(

nt2

y2 log c− 1
t

)

|y=1 < 0, which im-

plies that G also monotonically decreases in[1, nt2], and
thus can be maximized wheny = 1. Similarly, dG

dy > 0

if
(

nt2

y2 log c− 1
t

)

∣

∣

y=nt2
> 0, and G can be maximized

when y = nt2. Otherwise,G will be maximized when
(

nt2

y2 log c− 1
t

)

= 0, which leads to the setting ofy =
√

nt3 · log c. Summarizing, we obtain the optimal setting for
the hybrid scheme as

y(n) =







Θ(1), if log c < 1
nt3 ,

Θ(nt2), if 1
t < log c,

Θ(
√

nt3 · log c), if 1
nt3 ≤ log c ≤ 1

t .

(26)

Therefore, the optimal density of collecting node depends
on the reliability constraint and the transmission range (or the
distance between a node and the sink). The exact gain is also
determined by the choice oft, c, andy from (25). Since one
of the four terms of (24) will dominate the others, the gain
can present as

Gh(t, c, y) =















Θ((1 + 1
nt3 ) log

c
t ),

Θ( 1y (1 + nt3) log c
t ),

Θ(y(1 + 1
nt3 ) log

c
t/ log c),

Θ(1 + nt3),

where the cases depend ont, c, y.

Since c → ∞ and t ∈ [
√

logn
n , 1], we haveΘ(log c

t ) >

Θ(1) andΘ(log c
t / log c) ≥ Θ(1). Then for all four cases, we

achieveGh ≥ Θ(1) if y ∈ [1,Θ(nt2)] is chosen accordingly.
This result is expected: Since the instance ofU is equivalent
to the hybrid scheme withy = 1, the performance of the
hybrid scheme with optimal parametery must be no smaller
than that of the instance ofU. Further, if t(n) > 1

3
√
n

, a gain
strictly greater thanΘ(1) will be achieved.

V. SIMULATION RESULTS

In this section, we simulate our solutions, and evaluate
their performance. We are interested in reliability in terms
of successful transmissions as well as the delay. We first

simulate scenarios of TDMA networks without interference,
and proceed to resource-constrained networks with wireless
interference.

A. TDMA networks without interference

We compare the performance of unicast-based and
broadcast-based schemes in a wireless sensor network with
100 nodes, which are randomly placed in a disk of radius1.
The transmission range of each node is set to0.5. The tiered
structure has the width0.25 (δ = 1

2 ), and a parent-child
relationship has been established between every pair of nodes
if the two nodes are located in neighboring tiers and their
distance is less than0.5. In this setting, there are four tiers. We
locate the sensor node that generates the critical information
values at the boundary of the network, i.e., in the4-th tier.
Since routing follows the tiered structure, both aggregations
with unicast and broadcast takes at least four transmissions
for the packet generated from the sensor node to arrive at
the sink. We assume that for all tiersi, it takes the same
number of mini-slotŝh for all nodes inTi to finish a single
transmission, and consider̂h as a time unit for the delay
performance. For aggregation with unicast, we change the
number of retransmissionsru from 0 to 5, and for aggregation
with broadcast we setrb = 0. All links are assumed to fail
transmission with the same probabilityp. Changingp, we
count the number of time units (ĥ) required for the sink to
receive the critical information value and measure the rateof
failure, i.e., loss of the information. We run each simulation
1000 times and average the results.

Fig. 5 illustrates the loss rate of the critical information
value and the delay performance. Fig. 5(a) shows that ag-
gregation with unicast can improve the loss rate with more
retransmissions. However, it also increases the delay as shown
in Fig. 5(b). In contrast, there is no retransmission under
the broadcast-based scheme (rb = 0) and under the unicast-
based scheme withru = 0. Thus their delays remain constant
regardless of the loss rates. If we have the delay bound of
6ĥ, which is the minimum achievable delay plus2ĥ, then it is
observed in Fig. 5(c) that the retransmission strategy cannot
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B(3,1) B(3,2) B(3,3)

      

B(4,1) B(4,2) B(4,3) B(4,4)

Fig. 6. Conflict graph of blocks. Each blocks contains10 nodes. If a node
in a block transmits, no other node in the connected blocks can transmit at
the same time. Each vertex that represents a block is coloredsuch that no
two connected vertices have the same color.

improve the loss rate beyond a certain threshold, and that
aggregation with broadcast achieves better performance.

B. Resource-constrained networks with interference

We evaluate our hybrid schemes of Section IV taking into
account wireless interference. The difficulty in the simulations
lies in implementing an optimal scheduler. Since transmission
time ĥ in a tier changes with the number of collecting nodes,
we need detailed implementation of scheduling functionality,
which however often requires high computational complexity
even under a very simple interference model. To facilitate
implementation of the scheduling component, we consider
the following block-based network, which captures essential
features of wireless interference in tiered networks.

• Network topology: We group10 nearby nodes as a block
(like Cm

i ). Nodes in a block are within communication
range of each other, and they cannot transmit simulta-
neously due to interference constraints. Two blocks are
connectedwhen transmission of any node in a block can
be received by all nodes in the other node. Also, we
assume that no two nodes in the connected blocks can
transmit simultaneously due to wireless interference.
We assume that blocks have a tiered structure. There is
only one block of nodes that can transmit to the sink,
and this block consists of the first tierT1. In the second
tier T2, there are two blocks, each of which is connected
to the block inT1, They are also connected with each
other. Similarly, we assume that there arei blocks in
eachTi. Let B(i, j) denote thej-th block in Ti. For
in-tier interference, we assume thatB(i, j) is connected
with B(i, j − 1) and B(i, j + 1), where the addition
and the substraction is modular-(i+ 1) operation for the
circular property of the tier, i.e.,B(i, 1) is connected with
B(i, i). For data forwarding and inter-tier interference,
we connect eachB(i, j) to two blocks in Ti−1: to
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Fig. 7. Delay performance (time slots) in presence of interference, with
different number of forwardersk = 1, . . . , 10, and different number of per-
link transmissionsr = 1, . . . , 10. Loss probabilityp does not affect the
delay performance. Delay increases more quickly with increase inr than
with increase ink.

B(i− 1, j− 1) andB(i− 1, j), where the substraction is
again modular-i operation. We further assume that nodes
in the block of the first tier are directly wired to the sink
and hence, transmissions at the last hop, i.e., from nodes
in T1 to the sink, are neither lost nor interfere with other
transmissions. We consider a network with total10 tiers
and55 blocks.

• Interference: We can draw an equivalent conflict graph
by representing a block as a vertex. A vertexB(i, j) has
an edge with vertices ofB(i, j − 1) andB(i, j + 1) in
tier i (sibling blocks),B(i − 1, j − 1) and B(i − 1, j)
in tier i− 1 (parent blocks), and corresponding blocks in
tier i+1 (child blocks). Assuming that there is no inter-
ference between non-connecting blocks, the interference
relationship can be described in a simple form5 as ‘any
intended transmitting node in a block should be the only
transmitter within the block and its connected blocks.’
Fig. 6 illustrates the conflict relationship among blocks.

• Data transmission: We assume a time-slotted system,
where each time slot is further divided into mini-slots.
Data is generated at the beginning of each time slot, and
transmitted to the sink during the mini-slots in two steps:
collecting and forwarding. In each block, we choosek
out of 10 nodes as a collecting node (also denoted by
a forwarder). First, each non-collecting node in a block
broadcasts its data to all the collecting nodes in the block.
Then the collecting nodes aggregate the received data and
transmit to collecting nodes in the upper tier (i.e., to nodes
in the parent blocks. Note that in our network structure,
each collecting node inTi have total2k parent nodes in
Ti−1.) It is an instance of broadcast modelB if k = 10,
and it is close to an instance of unicast modelU if k = 1.

• Scheduling:For collecting data within a block, we sched-
ule as follows. We first color blocks using6 colors such

5The model takes into account wireless interference at the sender side, and
does not consider interference at the receiver side.
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(b) k = 3
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Fig. 8. Lost information (number of sensor nodes) in the presence of interference, with different link loss probabilities p = 0.1, . . . , 0.9, and different
numbers of per-link transmissionsr = 1, 2, 4, 8. Results with different numbers of forwardersk = 1, 3, 6 show that a small increase of forwarders can
significantly improve reliability.

that no two connected blocks have the same color6 as
shown in Fig. 6. We use3 colors at each tier. Nodes in
the blocks of the same color, one node per block, can
transmit at the same time without interference. Hence, it
takes6 · (10− k) mini-slots for each non-collecting node
to transmit once. We assume that the nodes retransmit
(i.e., re-broadcast)rx(≥ 0) times for reliable collecting.
After collecting the data within blocks, the aggregated
data is forwarded to the sink tier-by-tier. Note that blocks
of the same color can transmit at the same time. Hence,
all the collecting nodes in a tier can finish a transmission
for 3k mini-slots. Nodes retransmitry(≥ 0) times for
forwarding.

We simulate our schemes changing the number of for-
wardersk from 1 to 10. Each link between two nodes has
loss probabilityp, which changes in the range of[0.1, 0.9].
The number of (re)transmissionsr per link also changes from
1 to 10, i.e., 1 + rx = 1 + ry = r ∈ [1, 10].

Fig. 7 illustrates the delay performance for the sink to get
all the data under differentk andr in terms of mini-slots. Link
loss probabilityp does not affect the delay. The results show
sharp increases in delay when the number of retransmissions
r per link increases than when the number of forwardersk
increases.

Fig. 8 shows the impact of forwarders on reliability. We
measure the number of lost information with different link loss
probabilities, numbers of retransmissions, and numbers offor-
warders. The results show that a small number of forwarders
significantly improve the reliability, especially when thelink
loss probability is high, i.e., under a harsh environment like
under-water scenarios.

The gains of wireless broadcast are more visible in Fig. 9,
which presents the delay and the data loss for the given number
of forwarders. For eachk forwarders, the lowest-delay point
is a result when there is no retransmission (i.e.,r = 1), the
the next lowest-delay point is a result when there is1 per-link
retransmission, and so on. As the number of retransmissions
increases, the reliability improves while the delay performance
deteriorates. The curve fork forwarders can be considered as
an achievable performance boundary with different number

6Indeed, it is sufficient with5 colors in our particular case. If the number
of blocks does not increase by one per tier, we may need6 colors.
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Fig. 9. Delay performance and the number of lost informationin the presence
of interference, with different numbers of forwardersk = 1, . . . , 6, and
different numbers of per-link transmissionsr = 1, . . . , 10. Loss probability
p = 0.8. The performance boundary for eachk forwarders improves
approaching the origin, when the number of forwardersk increases.

retransmissions. The results show that the boundary improves,
i.e., gets closer to the origin, as the number of forwarders
increase.

VI. CONCLUSION

In a wireless sensor network, in-network aggregation can
significantly improve efficiency when the goal of the network
is to compute a global function. However, since the loss of an
aggregated packet is far more harmful than an unaggregated
packet, a higher level of protection is required for reliable
operations in lossy wireless environments. In this paper, we
use wireless broadcast as a means of protecting the aggregate
information for a class of generalized maximum functions.
Exploiting the diversity of wireless medium, broadcasting
spreads information spatially, and the properties of the function
enable distributed in-network computation with the spread
information. We show that aggregation with broadcast can
improve delay performance while satisfying the same level of
reliability. The gain can be presented as a function of reliability
constraint and transmission range.

Using a tiered network topological structure, we develop
solutions for aggregation that exploit wireless diversity, and
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are amenable to implementation in a distributed manner.
We evaluate the schemes in a resource-constrained network
with wireless interference. Further, we also develop a hybrid
scheme that combine the unicast and multicast architecture.
Simulation results show that aggregation with broadcast out-
performs aggregation with unicast, especially, in severely lossy
network environments.

There are many interesting open questions to consider.
Aggregation functions besides the generalized maximum func-
tions should be considered. An open question is whether
the performance bounds in the presence of interference in
Section IV-B are tight or not. Although we focus on the delay
performance, other performance metrics such as time com-
plexity and achievable sampling rate are also of importance.
It would be interesting to study the relationship between these
metrics with aggregation functions and network topologies.

REFERENCES

[1] A. Giridhar and P. R. Kumar, “Toward a Theory of In-Network Compu-
tation in Wireless Sensor Networks,”IEEE Communications Magazine,
vol. 44, no. 4, pp. 98–107, April 2006.

[2] R. G. Gallager, “Finding Parity in a Simple Broadcast Network,” IEEE
Trans. Inf. Theory, vol. 34, no. 2, pp. 176–180, Mar 1988.

[3] E. Kushilevitz and Y. Mansour, “Computation in noisy radio networks,”
SIAM J. Discret. Math., vol. 19, no. 1, pp. 96–108, 2005.

[4] L. Ying, R. Srikant, and G. Dullerud, “Distributed Symmteric Function
Computation in Noisy Wireless Sensor Networks,”IEEE Trans. Inf.
Theory, vol. 53, no. 12, December 2007.

[5] L. L. Peterson and B. S. Davie,Computer Networks: A Systems
Approach, 3rd Edition. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2003.

[6] A. Giridhar and P. R. Kumar, “Computing and Communicating Func-
tions Over Sensor Networks,”IEEE J. Sel. Areas Commun., vol. 23,
no. 4, pp. 755–764, 2005.

[7] S. Kamath and D. Manjunath, “On Distributed Function Computation
in Structure-Free Random Networks,” inISIT, July 2008.

[8] C. Li and H. Dai, “Towards Efficient Designs for In-network Computing
With Noisy Wireless Channels,” inIEEE INFOCOM, March 2010.

[9] J. Zhao, R. Govindan, and D. Estrin, “Computing Aggregates for
Monitoring Wireless Sensor Networks,” inIEEE International Workshop
on Sensor Network Protocols and Applications, May 2003, pp. 139–148.

[10] J.-Y. Chen, G. Pandurangan, and D. Xu, “Robust Computation of Aggre-
gates in Wireless Sensor Networks: Distributed RandomizedAlgorithms
and Analysis,” inIPSN, 2005, p. 46.

[11] N. Khude, A. Kumar, and A. Karnik, “Time and Energy Complexity
of Distributed Computation in Wireless Sensor Networks,” in IEEE
INFOCOM, 2005.

[12] S. A. Hofmeyr, A. Somayaji, and S. Forrest, “Intrusion Detection using
Sequences of System Calls,”Journal of Computer Security, vol. 6, pp.
151–180, 1998.

[13] E. D. Manley, H. A. Nahas, and J. S. Deogun, “Localization and
Tracking in Sensor Systems,” inIEEE International Conference on
Sensor Networks, Ubiquitous, and Trustworthy Computing, June 2006.

[14] Z. Wang and J. Crowcroft, “Eliminating Periodic PacketLosses in the
4.3-Tahoe BSD TCP Congestion Control Algorithm,”ACM Computer
Communication Review, vol. 22, no. 2, pp. 9–16, April 1992.

[15] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized Gossip
Algorithm,” IEEE/ACM Trans. Netw., vol. 14, pp. 2508–2530, June
2006.

[16] P. Gupta and P. R. Kumar, “The Capacity of Wireless Networks,” IEEE
Trans. Inf. Theory, vol. 46, no. 2, pp. 388–404, March 2000.

[17] ——, “Critical Power for Asymptotic Connectivity in Wireless Net-
works,” Stochastic Analysis, Control, Optimization and Applications: A
Volume in Honor of W.H. Fleming, pp. 547–566, 1998.

[18] S. Kulkarni, A. Iyer, and C. Rosenberg, “An Address-light, Integrated
MAC and Routing Protocol for Wireless Sensor Networks,”IEEE/ACM
Trans. Netw., vol. 14, no. 4, pp. 793–806, 2006.

[19] Y. Zhou and M. Medidi, “Sleep-based Topology Control for Wakeup
Scheduling in Wireless Sensor Networks,” inIEEE SECON, June 2007.

[20] W. Pak, J.-G. Choi, and S. Bahk, “Tier Based Anycast to Achieve Max-
imum Lifetime by Duty Cycle Control in Wireless Sensor Networks,”
in IWCMC, August 2008.

Changhee Jooreceived his Ph.D degree from Seoul
National University, Korea, 2005. He is an assistant
professor at Ulsan National Institute of Science and
Technology (UNIST), Korea. Before joining UNIST,
he worked at Purdue University and the Ohio State
University, USA, and at Korea University of Tech-
nology and Education, Korea. His research interests
span a wide area of networking technologies includ-
ing analysis, modelling, controls, and optimization.
He has served on the technical committees of several
primary conferences, including IEEE INFOCOM,

ACM MobiHoc, and IEEE SECON. He is a member of IEEE, and a recipient
of the IEEE INFOCOM 2008 best paper award.

Ness B. Shroffreceived his Ph.D. degree in Electri-
cal Engineering from Columbia University in 1994.
He joined Purdue university immediately thereafter
as an Assistant Professor in the school of ECE. At
Purdue, he became Full Professor of ECE in 2003
and director of CWSA in 2004, a university-wide
center on wireless systems and applications. In July
2007, he joined The Ohio State University, where
he holds the Ohio Eminent Scholar endowed chair
professorship in Networking and Communications,
in the departments of ECE and CSE. From 2009-

2012, he served as a Guest Chaired professor of Wireless Communications at
Tsinghua University, Beijing, China, and currently holds an honorary Guest
professor at Shanghai Jiaotong University in China.

His research interests span the areas of communication, social, and cy-
berphysical networks. He is especially interested in fundamental problems in
the design, control, performance, pricing, and security ofthese networks. Dr.
Shroff is a past editor for IEEE/ACM Trans. on Networking andthe IEEE
Communication Letters. He currently serves on the editorial board of the
Computer Networks Journal, IEEE Network Magazine, and the Networking
Science journal. He has chaired various conferences and workshops, and
co-organized workshops for the NSF to chart the future of communication
networks.

Dr. Shroff is a Fellow of the IEEE and an NSF CAREER awardee. He
has received numerous best paper awards for his research, e.g., at IEEE
INFOCOM 2008, IEEE INFOCOM 2006, Journal of Communication and
Networking 2005, Computer Networks 2003 (also one of his papers was a
runner-up at IEEE INFOCOM 2005), and also student best paperawards (from
all papers whose first author is a student) at IEEE WiOPT 2012 and IEEE
IWQoS 2006.

12


