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Abstract—We investigate the problem of minimizing the sum which at each time slot, and for any sample-path traffic
of the queue lengths of all the nodes in a wireless network wita  arrival pattern, the sum of the queue lengths of all the nodes
forest topology. Each packet is destined to one of the rootsifiks) in the network is minimum among all policies. Further, a

of the forest. We consider a time-slotted system, and a pring | | th obtimal scheduli licy | |
(or one-hop) interference model. We characterize the existice of causal sample-path optimal scheduling policy 1S a sample-

causal sample-path optimal scheduling policies for this rteork ~ Path optimal scheduling policy that is also causal, i.eg th
topology under this interference model. A causal sample-gh  scheduling decision at any given time slot is independent of
optimal scheduling policy is one for which at each time slot, fyture traffic arrivals.

and for any sample-path traffic arrival pattern, the sum of the This problem has a number of applications, for instance, in

gueue lengths of all the nodes in the network is minimum among . | tworks with ltio] d destinat
all policies. We show that such policies exist in restricted fast WITEIESS SENSor Networks with muitipie source and destina

structures, and that for any other forest structure, there exists a Nnodes (sinks) where the sinks require to receive packets in a
traffic arrival pattern for which no causal sample-path optimal timely manner from the sensors. Since interference is @akit
policy can exist. Surprisingly, we show that many forest stactures  aspect of wireless networks, it is important to find a trarssmi
for which such policies exist can be scheduled by convertinie  gjon schedule such that packets reach the sinks in minimum
structure into an equivalent linear network, and scheduling the . . . L

equivalent linear network according to the one-hop interfeence _tlme. We are |ntergsted In minimizing the_SP”? of queue lesigth
model. The non-existence of such policies in many forest stc-  in the system as it can be shown to minimize the long term
tures underscores the inherent limitation of using samplepath  time average delay experienced by packets in the system.
optimality as a performance metric, and necessitates the e to The convergecasting problem [11] is a special case of the
study other (relatively) weaker metrics of delay performarce. problem considered in this paper in which all the packethén t
network are destined to a common sink, i.e., there is only one
sink in the network. Delay efficient convergecasting hambee
well studied in the scheduling literature. Tassiulas et[&D]

We investigate the problem of finding causal sample-patfinst studied the problem of dynamic scheduling for converge
optimal scheduling policies for minimizing the sum of theasting in linear networks with the sink at the root of theicha
queue lengths of all the nodes in a wireless network withhey showed that for the primary (or one-hop) interference
forest topology. Each packet in the network is destined ® omodel (where two links that share a node cannot be both active
of the roots (sinks) of the forest. We first recall the defoitof  at the same time), for any traffic arrival pattern, any maxima
a sample-path traffic arrival pattern and a causal samgle-peatching policy that gives priority to the link closer to thiak
optimal scheduling policy for a wireless networks as defingd optimal in the sense that the sum of the queue lengths of all
in [10], [9], [4]. the nodes in the network is minimum at each time slot. This
Sample-path traffic arrival:iLet A(¢)|t € {0,1,2,...} be a is a very strong result because for any sample-path arratal p
stochastic process, wher(t) is a random vector (repre-tern, this policy is optimal. Also, it is causal as it does rest
senting traffic arrivals at nodes in the given network) oquire knowledge of future arrivals. Ji et al., [9] consideradl
the probability spacéQ), F, P). For any fixed sample point generalized switches with at most four links. They develop a
w € Q, the functionA,(¢) : t — A(t) is called a sample- sample-path optimal policy for switches with three linkada
path of the stochastic process. In other words, consideriacheavy-traffic optimal policy for switches with four linkk
traffic arrivals as a stochastic process, any sample traffi@a [4], Gupta et al., have provided a sample-path optimal polic
pattern constitutes a sample-path of the stochastic psoces for a clique wireless network where only one link can transmi
Sample-path optimal scheduling policgk sample-path op- at any time, and there are multi-hop flows. Venkataramanan et
timal scheduling policy for a wireless network is one foal., [11] have shown that the policy of giving priority to ks

closer to the sink is optimal in the large deviations sense, i

S. Hariharan is with AT&T Labs. Email: srikanth.hariharag@ail.com the rate of decay of the probability that the sum of all theugue

N. B. Shroff is with the Departments of ECE and CSE, The OhiateSt lengths exceed® as B — oo is maximum, even in a general
University. Email: shroff@ece.osu.edu )

* Corresponding author tree topology. In a preliminary version of this paper [6], we

This work was supported in part by ARO MURI Awards W91INF-07haye characterized the existence of causal sample-pathaipt
10376 (SA08-03) and W911NF-08-1-0238, and NSF Awards CREED36, T .

CNS-1012700, and CNS-1065136. policies in tree structures. In this paper, we present these

A preliminary version of this paper by S. Hariharan and N. Bra¥  sults, and also extend our analysis to forest structurashé&i
tited *On Optimal Dynamic Scheduling for Sum-Queue Minzaion in iy [8], we have investigated the existence of causal sample-
Trees” appeared in the Proceedings of @k IEEE International Symposium . .. . .

path optimal policies in tree structures undefahop inter-

on Modeling and Optimization in Mobile, Ad Hoc, and WireleNgtworks ) . ) .
(WiOpt), 2011 [6]. ference model, in which no two links that are withiti hops

I. INTRODUCTION



of each other can be simultaneously activated during a slot. The rest of this paper is organized as follows. In Section II,
Apart from the literature considering traffic arrivals, tae we describe the model and notations. In Section Ill, we

exist a number of works studying the convergecasting problaliscuss forest structures for which causal sample-paimapt

in the absence of arrivals. Florens et al., [2] have studiedheduling policies exist, and we develop such policies for

the problem of minimizing the time by which all the packetthese structures, and prove their optimality. In Sectionwé

in a network (with a tree topology) reach the sink, for ashow that there exists no causal sample-path optimal sthedu

one-hop interference model. They propose polynomial tinieg policy in any other forest structure. In Section V, we

algorithms for this problem. Bermond et al., [1] and Gargargiscuss various metrics of delay efficiency such as evamuati

et al., [3] have further studied this problem for disk basetime optimality, and delay optimality from a large deviatio

communication model, and arbitrary network topologiegserspective. Finally, we conclude the paper in Section VI.

respectively. In [5], [7], we have studied the convergedngst

problem for data aggregation in wireless sensor networks Il. SYSTEM MODEL

addressing practical constraints such as unreliable ,IinksWe model the network as a gragh(V, E), where V' is
ene;gyfefﬁuﬁncy, andl deadl]]lne qonsltral?tg. h v b the set of nodes anfl' is the set of links. The graply is a
. T e fact that sample-path optimal policies have only Degfest e refer to the roots of the forest as sinks. The sinks
identified so far N very restncte_d topologies such as _Imeao not make any transmissions. We assume that the graph is
ngtworks, sw_|tches with three links, and networks with Bonnected, i.e., there is an undirected path from each node
clique-based interference model clearly shows the streafjt to any other node in the network. If there are unconnected

this metric. Also, we can see that s.cheQUI.ing policieg us“?:%mponents in the network, our results can be immediately
relatively weaker metrics such as optimality in the largei@le . :onded to such a network by applying the sample-path

tions sense, and optimality in the absence of arrivals haea b optimality result to each component independently, ilere
identified for more general networks (trees) under the a-h i1 oxist a causal sample-path optimal policy in such a
interference model. Further, in the absence of arrivalyjra-n network if and only if there exists a causal sample-path
ber of practical issues in wireless sensor networks hava b%eptimal policy in each of the individual components.

modeled and investigated for the convergecasting problem. "\v. scsume a time-slotted and synchronized system. We

In this work, we wish to study scheduling in WIreIeS%onsideraone-hop (or node exclusive or primary) interfeee

ne’;\t/vorks g/v ith .? f(lnlrest topoI(_Jgty fort adrpltrzry traﬁtl;l: E;T'Vimodel where two links that share a node cannot be active at
patierns. speciically, we are interested in being able W-Chype same time. As in [10], [2], we assume unit capacity links,

acterize all possible forest structures for which causalse- i.e., a node can at most transmit one packet to its paremgluri

paéh optlmf_lbsihedu_Iln?h_pollaeks eXIsttr.] followi each time slot. Further, each node in the network is equipped
ur co_n rbu |or75 N this work are the toflowing. with a half-duplex radio transceiver, and therefore a node
« We first consider forest structures where all the roots @b ot transmit and receive during the same slot. The esdtern

the forest have exactly one common child, and have nQ et arrival pattern at nodes is arbitrary and unknown.
other children. The sub-tree rooted at this child can have

an arbitrary topology. We show that the policy of giving m

.. ) . e E XISTENCE OFSAMPLE-PATH OPTIMAL POLICIES
priority to links closer to the sink minimizes the sum of ] ] ) j
the queue lengths of all the nodes in the network for In this section, we consider forest networks for which there

every time slot, and for any traffic arrival pattern, b}pxists sam.ple—path optimal scheduling poli.cies, and dgvel
identifying a relationship to a schedule in an equivaleﬁHCh a policy for these networks. We classify these networks
linear network. into the following classes, and develop a causal sample-pat
« We develop a causal sample-path optimal scheduliQgtimal scheduling policy for each class.
po]icy for Sing|e_hop forest networks where all the roots e Class.A: This is the class of forest structures where all
of the forest have exactly one common child, and at most  the roots of the forest have exactly one common child,
one root has other children. and have no other children. The sub-tree rooted at this
« We provide a causal sample-path optimal scheduling child can have an arbitrary topology.
policy for forest structures with one root (trees) where « ClassB: This class is defined as the class of single-hop
all but one of the root’s children is not a leaf node. forest networks where all the roots of the forest have
« Surprisingly, we show that for all other forest structures, —€xactly one common child, and at most one root has other
there exists a traffic arrival pattern such that without hay- ~ children.
ing know|edge of future arriva|s1 there exists no Samp|e- o ClassC: This is the class of forest structures with one
path optimal scheduling policyThus, we completely root (trees) where all but one of the root’s children is not
characterize the existence of causal sample-path optimal @ leaf node.
scheduling policies in wireless networks with a forest Figure 1 provides examples of Classds B, andC. In
topology under the one-hop interference modeiven Figure 1(a), there are three roafs, S>, and S3 that have
the strength of the sample-path optimality metric, it is aa common childD. The roots have no other children, and
important result to have completely identified the exighe structure of the sub-tree rooted/atis arbitrary. Hence,
tence of such scheduling policies in a significantly largehis is a ClassA forest. Figure 1(b) provides an example of
class of network topologies than in existing literature. a ClassB forest where there are three rodis, S2, and .Ss,
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(a) ClassA (b) ClassB

Fig. 1. Forest structures for which causal sample-patm@itpolicies exist

all of which have a common child. The rootS; has three
other childrenE, F', and G, while the other roots havé

as their only child. Finally, Figure 1(c) is an example of a
ClassC forest. Clearly, this structure is a tree withas the
root. S has multiple children but only nod® is not a leaf
node. The sub-tree rooted & can be arbitrary.

A. ClassA

We first consider Clasgl forests. We show that the sample-
path optimal policy for this class is to convert this struetu
into an equivalent linear network [2], and schedule the equi
alent linear network according to the one-hop interferengg, ,  equivalent Linear Network
model.

We first recall the definition of an equivalent linear network
from [2]. Consider a Classl forest networkG(V, E') whereV
is the set of nodedy is the set of edges. SuppaSeepresents the equivalent linear network according to the sample-path
an arbitrary root in the forest(V, £), and each node € V' gptimal policy for linear networks defined in [10]n [2],
has/3, packets during a given time slot. Each packet could kgis policy is shown to beevacuation time optimafor the
destined to one of the roots of the forest. The equivaler8lin cjass of trees where the root of the tree has only one child
network G(V;, E;) is defined as follows}; = {0,1,..., N}, put the rest of the tree is arbitrary. We recall the definition
Ey = {(i - 1,i),1 <i < N} where N = max(d(5,u)). of an evacuation time optimal scheduling policy. Consider a
d(S,u) represents the distaricef nodew from the rootsS. wireless network where each node has a certain number of
Note that since the network is a Claskforest, each node packets initially for a known set of destination nodes. Assu
in the forest is at the same distance from any of the roots it there are no further packet arrivals in the netwdk.

the forest. Further, each nogec V; hasa; packets during evacuation time optimal policy is a scheduling policy such
the same time slot, where; = Z B that the time by which the network is evacuated, i.e., the las

WV d(Su)=j packet reaches its destination is minimum among all pdicie
Figure 2 gives an example of this transformatish, S,, Clearly, requiring sample-path optimality is a signifidgnt
and S are the roots (sinks). The farthest node in the forest$§onger criterion than requiring evacuation time optityal
3 hops away from the sinks. Therefore, the equivalent linegsince sample-path optimality requires optimality at eactet
network has 3 nodes and the sink no@leThe number of slot (and not just optimality at the final time slot) and also
packets at each node is mentioned in the figure. The to@gtimality for any arbitrary traffic arrival pattern.

number of packets from nodes that are 2 hops away from the the reader's convenience, we provide the sample-path
sink is 7 (=3+4), and that from nodes that are 3 hops awgjtimal policy for linear networks below. We also explaimho
from the sinks is 9 (=6+1+2). Therefore, the equivalentdneq convert the schedule for the equivalent linear netwot in
network has 5 packets in node 7 packets in node, and 9 5 schedule for the original forest.
packets in nods. ) ) . .

We show here that the sample-path optimal policy for Consider a linear network consisting dt+1 nodes indexed

this class of forest networks is simply to schedule packets{fom 0 to N. Node0 is the root of the linear network. We
have the following notations and definitions (Table I).

1Throughout the paper, the “distance” between any two nadesforest is = h . bl h | h
simply the number of hops between the nodes. We use the tefistarice” or the convergecasting problem, the queue length vector

and “hops” interchangeably. of the linear network evolves as(t + 1) = X(¢) + RI(¢t +



TABLE |

DEEINITIONS ules. This implies that even withollaximal Matching
this policy is optimal. Note that &aximal Matching
1 | Activation Set: A set of links that can be simultaneouslynated such policy is one that schedules a set of non-interfering links

that no two links interfere with each other according to the-top . . . .
interference model. such that no additional link can be included in the set

2 | Activation Vector ((t)): An N-dimensional binary indicator vectomwith one without interfering with at least one of the existing links,

element for each link (which is not zero if and only if the libklongs i.e.. the set of links scheduled is maximal. It is intereg;tin
to the activation set). th :[ ithout scheduli dditi | interferi
3 | S: Set of all possible activation vectors. ’ a eve_n WI_ Ol‘! scheduling a |_|0na non-interiering
4| A;(t): Set of exogenous packet arrivals to nadat slott. links, this policy is sample-path optimal.
5 Q@i A(? = (4i(t),i=1,..., N) is the vector of arrivals at all nodes « Suppose that a nodein the equivalent linear network is
uring slott. . . .
6 | X;(t): Length of the queue of packets at nadby the end of slot. selecf[ed to schedule dqung a certain slot accorqmg‘lto
Xi(t) > 0Vie{1,2,..,N}. Consider nodes that atehops away from nodé in the
7| X(®): X(t) = (Xi(t),i =1,..., N) s the vector of queue lengths at all original forest that have at least one packet to schedule.

nodes at the end of slot

8 | X: The queue length proceds (¢)}:<,. One of these nodes can be chosebitrarily to schedule

its packet during that slot. This means that the optimal
solution neither depends on the structure of the forest
1)+ A(t + 1), whereR is an N x N matrix with elements nor the number of packets at each node. For example,
in Figure 2, we can arbitrarily choose to schedule one

o 1’1 jf ! +1 1) of {D, E, F'} according tor 4. Further, the policy does
A T not depend on which destination the packet is destined
0, otherwise

to in the original forest. This is intuitive since a packet
As explained in [10], the matriR is a transition matrix is equidistant to any destination for a Cladsforest.

representing the change in the queue lengths at each node If a nodes in the equivalent linear network is selected

when a packet is scheduled from one node to another in to schedule during a certain slot accordingat®, none

the network. For instance, suppose that the ljnk- 1,4) is of the nodes that aré— 1 hops away from nodé® in
activated, i.e., a packet is scheduled to be transmittesh fro  the original forest can transmit. Since it is possible to
nodei+1 to nodei. Then, the queue length at nodimcreases potentially schedule a node that is at distaneel and a
by 1 (n; = 1 wherej = i + 1), and the queue length at  node at distancé simultaneously without interference as
nodei + 1 decreases by Ir1)(i4+1) = —1) because of this long as the node at distantés not a child of the node at
scheduling. The queue lengths at all other nodes in the mketwo  distance —1, it is interesting that even without scheduling
are not affected by this schedulg (= 0 for j # i, + 1). such non-interfering links, this policy is optimal. For

Note that the above equation is for the equivalent linear example, in Figure 2, we can potentially simultaneously
network. For the original forest;;; is the same except that scheduleB and E. However, this policy does not allow

“5 =1+ 1"is replaced by ¥ is a child ofi". such a schedule because in the equivalent linear network,
Policy m4: We now define thestationary policyr 4 which, at when node3 makes a transmission, no8ecannot make
slott, selects the activation vectbft) = g4 (X(t—1)), where a transmission under the one-hop interference model.

ga : ZY — S'is defined as follows. Let= g4(x) andi;, z; Let P be the class of all possible activation policies. The

be the;'" elements of vectorsandx respectively. The Vector proof that 7, is optimal for ClassA forests is similar to
I is defined recursively as follows; = 1, if z; > 0, and0, Tassjulas’s proof for linear networks. Intuitively, theasen
otherwise. Forj = 2,..., N, i; = 1, if 2; > 0 andi; 1 = 0. thatr, is optimal for such a large class of forests (even though

Otherwise,i; = 0. . o it is not a Maximal Matching policy) is that the links from the
Policy 74 is clearly causal, and gives priority to packetgjns’ child to the sinks serve as a bottleneck for all thekps
closer to nodé in the equivalent linear network. in the system. Therefore, even if we allow for a Maximal

It has been shown in [10] that, is a sample-path optimal patching based schedule, the packets have to ultimatelyegue

scheduling policy for convergecasting in linear networkeer 5 4t the sinks’ child, and get transmitted one after another
the one-hop interference model. However, when we apply

this policy to the equivalent linear network that we desedib Theorem 1. Consider the evolution of the system (Clads
earlier, we need to clarify issues regarding transformimg tforest) under policyr, and an arbitrary policyr € P. LetX,

schedule of the equivalent linear network back to a scheddfé be the queue length processes undemd 4 respectively
for the original forest network. when the system starts from the same initial $tateder both

« According to policyr4, any nodei in the equivalent Policies. Forallt =0,1,... we have

linear network can schedule at most one packet during ZXQ(t) < ZXi(t) as. )
any time slot. This means that among all nodes that T

eV eV
are i hops away from nod® in the original forest, at . . . .
most one packet will be scheduled. Note that the one-We first provide some definitions and lemmas before going

igto the proof of the theorem.

hop interference model allows multiple nodes (at th finition: Let X. Y be th lenath h
same distance from the sink) to potentially schedule th pennition. Let A, € the queue length processes when

transmissions S|mU|ta_neOUS|y if they do not have the samerpoughout the paper, the “state” of the system refers tatieie lengths
parent. However, policyr4 does not allow such sched-of all the nodes in the system.



the initial queue length vectors a¥(0) = x, Y(0) = y packetto leave the systemiisince at each slot one packet will
respectively, there are no exogenous arrivals, and palicy be forwarded from node 1 (in the equivalent linear network,
schedules link activations. We say that the vectorandy and hence in the original forest) to its destination ung! time

are related with the partial ordering, and we writex <y, that node 1 has no more packets to send. Therefore, in this
if for all t = 0,1, ..., we havel(X(t)) < I(Y(t)), where the case, the packetwill reach node0 in the equivalent linear
function I(-) represents the total number of packets in theetwork at the end of slat Therefore, ifdX = 1, tX = .

system for a given state. To be precise, for any system statéf < > 1 andd} > 1, we distinguish the following cases.

z={z,i €V} 1@ =Y ,cy - Case 1dX — X | > 2.
To each statex we define thedeparture timestX, i = At any slott < tX |, the packeti — 1 should reside in
1,...,1(x) and thepositionsdX, i = 1, ...,1(x) as follows. a nodej in the original forest such that(s,j) < ¢X , —t

Definition: Assume that the system is initially in staie because it should reach the destinatiort’in, — ¢ slots, and
there are no exogenous arrivals, and policyschedules link cannot be forwarded faster than one hop during each slot.
activations. Let{X(¢)}22, be the corresponding queue lengtiAlso, at timet, the packet should reside in a noda: such
process. LetS represent any of the roots of the forest. Théhat d(S,m) > d¥ — t since it cannot move faster towards
time tX is defined as the destination than one hop per slot. Therefore we have
. L d(S,m) > df—t > t* | —t+2 > d(S, j)+2. This implies that
£ =minft st > 0,1(X(#) <10 =i}, i =1, 10x), (3) p;cketz —1 will be, at each slot, (at Ie)ast two hops closer to
and the positionii( is defined as the destination than packétn both the original forest as well
" ' ' o as the equivalent linear network. Therefore packeill be the
di = max{j+1:j >0, Z zn <i}, i=1,..,1(X). first packet in its queue (according to our convention), dhd a
neV:d(S,n)<j the nodes in the forest that are one hop closer to the dédstinat
_ . (4), _than the node at which packeturrently is have no packets in
Note that the definitions have been appropriately modn‘leEHeir respective queues. Therefore, packetll be forwarded

for our topology. The corr_esponding definitions for th_?)y one node towards the destination at each slot. Henceepack
equivalent linear network will be exactly the same as INvill reach the destination by the end of sigf, i.e., /X = dX
Definition 3.2 in [10]. Let us now index the packets by an '~ oo 5. X _ X < T v

et —1 = +*

index i that denotes the order in which the packets reachIf i >1andd > 1, thentX > X | + 2. This is because

th?réjelstlnlgtll(cms when the jyitem IS In statat ¢ = O’S;E _any packet which is not residing in nodein the original
schedules link activation, and there are no exogenousaBIN ¢, o (or the equivalent linear network) &t= 0, can reach

. X . .
The departure time;’ is the slot by the end of which paCketnode 1 only when there are no packets left to schedule in

¢ rteacrlles It?j ?ﬁsnnat',(t)_n mi(;‘o'dbt;]n tgletequwalfert'lrt] Imez:\jr nodel, since nodel is activated otherwise, and because of
network), an € posilion;” 1S Ihe distance of the node, one-hop interference modeHence, during the slot at

(from node0 in the equivalent linear network) at which packe\tNhiCh i — 1 leaves the system, packetill be in node?2 in
1 was residing at = 0. In the equivalent linear network, if '

. the equivalent linear network (corresponding to one of the
di‘ = k, then packet was residing at nodg at¢ = 0. q ( P d

children of nodel in the original forest) or further away

We now show that the de_parture times and the pos't'oﬂ%m its destination, and therefore it requires at least two
for our topology are related in the same manner as in Eq%?dditional slots in order to reach its destination.

tion (3.4) in [10]. We now show thatX = X | +2. If packet; is forwarded to-
Lemma 1. For Class.A forests, for all statex we have wards its destination by one node at each slot then it withea
X iz 1 its destination by slot’X. However, this is impossible since
i X df—¥ | <1, and we needX > X | +2. This means that at
i ar =1 (5) o ;
X X1 o X some slot, packetis not forwarded from its node (say noke

max{ti, +2,d7} 0> 1,d7 > 1 Suppose that packét— 1 was residing at nodg during this

Proof: Before we go into the details, we recall that &lot. Then we must either haws, j) = d(S, k), ord(S,j) =
packet that is destined to one of the roots of the Claserest d(S,k) — 1, i.e., in the equivalent linear network packet 1
is destined to nodé in the equivalent linear network. L&t s either in the same node wittor in the node in front of to-
represent any of the roots of the Claggorest. Further, nodé wards the destination. Therefore, at the slot at whialas not
in the equivalent linear network corresponds to the commdéwrwarded and at all subsequent slots until the time paickét
child of all the roots in the Clasd forest. Therefore, in order leaves the system, packétands — 1 cannot be in two nodes
to reach any destination (one of the roots), a packet needsipn such thatd(S, m)—d(S,n) > 2. Therefore, two slots af-
traverse through nodée ter the time packet—1 reaches node in the equivalent linear

Consider the system operated under policy, with initial

statex and without arrivals. The time taken by the first packet “Note that this is true only when the roots have only one comutuld,
d have no other children. In a general forest, simultamg¢mnsmissions

_to exit the _SYStem is simply the d|5ta_nce_ of the nod_e at Whl(gﬁe possible among two nodes at distance one to their raspédifferent)
it was residing att = 0 to the destination (nodé in the roots. Simultaneous transmissions are also possible amaougle at distance
equivalent linear network) because it gets forwarded by ofig® from one of the roots’ children, and a node at distance itwanother
. . X branch belonging to the same root. The fact that such traséonis are not
hOp dur'ng each time slot. Therefom%(' = _dl : . possible in ClassA forests is one of the most important reasons why all the
For a packeti such thatdﬁ( = 1, the time taken by this proofs in [10] works for this topology. Node serves as a bottleneck.



network, packef also reaches node Thus,tX = tX | +2. m  max{tY — 1 +2,d,, — 1} < max{t? +2,d%,} = t?,, <
We now recall Lemma 3.2 in [10] below. This lemma isnax{t) + 2,d,,} = /_,, where the third relation follows
—1andd?, > &,, — 1, and the fourth

. . i+11
independent of the network topology, and is a property of t'?fecausetf > ,;15’ Z

sample-path optimality metric. relation holds becausé < ) and %, < dzyﬂ.

Lemma 2. For any two vectors andy, we havex <y if and Therefore by induction, the relation (7) holds. From the
only if tX < =1 1(x), wherek = I(y) — I(X). relations (6), (7), and the fact that< vy, it follows thattzl.J <
P — ) ) 1 z

e S _ 2, V=1, 1),
Lemma 2 implies that if the initial difference in the sum of "'~ oo 24(u) = 1(x) — 1, 1(2) = I(y).

the [ i i ;
queue Iengths.betwe_en staxeanqt})ll is k, thenx <y if In this case, we need to show that < tizMH, Vi =
and only if for any:, the time for thei** packet to leave the ; I(u).

system according to staieis no greater than the time for the ’ Since one packet exits the system according to patigy

(i + k)™ packet to leave the system according to state e ;4 1t packet in the previous slot now becomes iHe
We now show that if there are no exogenous arrivals, po"%cket. Therefore,

w4 minimizes the sum of the queue lengths of all the nodes M X 8)

in the system for each time slot. co

Lemma 3. If we havex < y, and| is an arbitrary activation For z, thg situation is identical to.that of Case 1. 'Iz'herefore,

vector, then foru = x + Rga(x) and z = y + Ri, we have ;hf Lellatmnl((u?) holds. Therefore, t follows that < ...,

u==z Case 3i1(u) =1(x) — 1, 1(2) = I(y) — 1.
Proof: We show that for all = 1, ..., {(x) we havety < In this case, we need to show thgt < 7,V i =
tz'z+l(Z)—l(U) and thus from the previous lemma, we must have - U(u).
U<z From Case 2 fou, we havetyl =X, ,.
Let I(y) — I(X) = k. We have four cases. For z, we now show by induction that
Case Li(u) = I(x), I(z) = L(y). y zo Y _
In this case, we need to show thgt < 2, Vi = fr 202 B = L ©)
1,...,1(u). i = 1: We havet? = d% Also, £ > &J. If ) = dY, then
Sinceu results from applying policyt 4, from the definition ¢Z = ¢4 > dg -1> t¥ —1, andt? = d? < dg < t¥. This is
of departure times, it immediately follows that becauseig— 1<dé< dg (since the second packet according
tiu _ t;( 1 ©) to statey could have at most moved one hop closer to its

destination). Therefore, the result holds in this case. i&n t
We now show by induction on that other hand, it is also possible th%t = dg + 1 if the second
packet resided at node 2 at the previous slot in the equivalen
linear network. Since a packet left the system during ttos sl

i =1: We havet = @, andd’ > d? > &/ — 1 for the (Sincel(z) = I(y) — 1), the second packet still remains at
first packet. The first equation follows from Lemma 1, anfode 2. In this casef = df = d%/ = t3 — 1. Therefore, the
the second follows from the fact that the first packet canngglation (9) holds for the first packet in state
travel more than one hop in one slot. Therefore, we haveASsume that it holds for some packeby the induction
Z=d>d -1=¢ -1, andt? < &/ = . Thus, the hypothesis.

x> 1 (7)

result holds fori = 1. i+ 1:y|f dZ, =1, thent? , = i+1, andt?ﬂ =142
By the induction hypothesis, assume that the result holtence,t;, , > tf+1 >t ,— L
for some packet. If dZ,, > 1, then by Lemma 1, we haw, ; = max{tZ +

i+ 10 d4, =1, thent?,, =i+ 1.8, —i+2ifthe 2,dZ}. We now verify (9) for both values of’,,.
packeti + 1 was in node 2 in the equivalent linear network If tZ , = dZ ,, then it follows thattZ , = dZ , < dyﬁ <
and activated by activation vectoror t%lﬂ =i+ 1if the ¢

. . . 2"
pagket_z +1 was |rr1] nofdel ;md_n )\l/vas n(%t siheilduled by tiZJrl _ tiz+ 2, thel_’1 tiZJrl _ fiz+ 9 < _t¥+1 + 9 < t?/ﬂ’
activation vector. Therefore/, | = 7, orti; =1, — 1. where the second relation follows by the induction hypaithes

= z z
Thus the result holds whedf’, | L i o, =, then_t¥+2 =&, <dP 1 <tE+ 1,
If di7,, > 1, thent?,, = max{ty +2,d7,,}. We show that since the packet + 2 in statey can move at most one hop

eitherd?, | = d),, — 1, ord%, | = dJ,,. Suppose that packetcloser to the destination according to activation vetor
i+ 1 in statey is at distancel from the roots of the forest.  If t¥+2 - t¥+1 +2, thent?,, > tf+2 > t¥+1 +2-1=
Even if the activation vector schedules multiple packets att%’Jr2 —1, where the second inequality follows by the induction
the same distance to the roots, the packetl in statez can hypothesis.
either be at a node at distande— 1 from the roots, or at  From the four relations above, the relation (9) holds for
a node at distance from the roots since any packet can at i 1. Therefore, by induction, it holds for ail
most reach_one hop closer to_the sink during a single timeThe relations (8) and (9) imply that! < tz_ZM, Vi =
slot. Thus,d?,, = &,, —1, ord?,, = &, . 1,...0(u).

Now, we havet%ﬁrl -1 = max{t%’ + 2,d¥+1} -1 = Case 4i(u) = 1(x), I(z) = I(y) — 1.



In this case, we need to show that t4 < tf+k_1. statez is either the newly arrived packet or leaves after the

The case fow is identical to that in Case 1, and the caseewly arrived packet.
for z is identical to that in Case 3. Hence, the result follows. For this case, we give a proof by contradiction.

Thus, we have shown that< z ] Suppose that for some ¢! > 7.

We now show that the ordering is preserved even after a Sincei + k in statez is either the newly arrived packet or
packet arrives at any node in the network. To be precise, letleaves after the newly arrived packet, anid stateu is either
be the vector which has all its elements equal to zero excép@ newly arrived packet or leaves before the newly arrived

for the element which is 1. Then we have the following. Packet, we haveZ,, > d%,, > dY, since packets closer to

the roots leave the system before packets farther away from
Lemma 4. If we havex <y, then for allj € V', we also have ihe roots.

X+e <y+ée;. Hence,t!! > tZ, means that! > d. ThereforetY =
. . . . z z o
Proof: First note that if a packet arrives at a noglén )+ 2-2 Sotd | +2>1tZ, > £, | +2. This implies that
the forest at a distance from any of the roots of the forest, tzu_l >l -

then it arrives at node in the equivalent linear network. Iteratively substitute by i — 1 until eitheri = 1 in stateu
Letu=x+e;, andz=y+e;. Sincex <y, I(y) —I(x) = Of i+ k is a packet that leaves before the newly arrived packet
k> 0. Thus,i(z) — I(u) = k. in statez. If i = 1 in stateu, thentY = @Y. However, this
We need to show thati = 1,2, ..., 1(x) + 1, contradictg! > @Y Vi. If i+k in statezis a packet that leaves
Uz before the newly arrived packet, theh, = ¢}, , andt¥ < ¢X.
bt <t (10) However,tf+k < t¥ then contradicts the fact that< y.

: . ue,z i
Case 1: Packet in stateu leaves before the newly arrived Hencet; <7, by contradiction.

newly arrived packet in state Further, neithei nor i+ k is  &rrived packet, and packet: k in statez is either the newly
the newly arrived packet. arrived packet or leaves the system after the newly arrived

For all such packets! = X, andt?,, = #,, because the Packet _
transmission schedules of these packets are not affectdeby FOF Packets in state that leave the system after the newly

. u _ X . . .
arrival of a packet at nodg Therefore, the relation (10) holds@/"ved packet, we havé; = d;*,. Similarly, for packets in
for this case. statez thazt Ieaveythe system after the newly arrived packet,

Case 2: Packatin stateu is either the newly arrived packetWe haved d

itk — Yitk—1 )
or leaves after the newly arrived packet, and packetk in ~ SUPPose that the new packet is thé" packet to leave the
statez leaves before the newly arrived packet, and is not t

fystem according to statg and thent” packet to leave the
newly arrived packet.

system according to state
We haved! < dX Vi = 1,...,i(x) because if the packet T i k=n <), df < gl,}ll andt%yl = t?z;,—l' Sotf =
in stateu leaves before the newly arrived packe}l = ¢, max{t;_; +2.d%} < max{t}_; +2,dn} = tn. Therefore,
and if s is either the newly arrived packet or leaves after thé < ti.
newly arrived packetd¥ = @X | < dX. We now show that?,, > t¥+k_1 wheni + k > n.
We want to show now that! < tX. We do this by induction. _ First, consider the new packet k = n: Sincet’ > tZ | =

i = 1: We havety = ai < dX = #X. Thus, it holds for #/_,, we haverZ > #)_,. Thus the result holds far+ k = n.

n—1
1 =1. Assume that the result holds for a packet k =1 > n in
Assume that!! < X for some packei by the induction statez i.e., ¢ > t%/_l.
hypothesis. Consideri+k = [+1: We havetf, | = max{t/+2,dZ, ,} >
Xz' +1: If tz'u+1u: dz'u+1xand X, = d¥,, then sincedt | < max{tY | +2,d} =4, sinced?, | = & andt? > 1) .
di’ 1, We havety | <t ;. Thus the result holds far+ 1.

If ¢, =t +2 andeX,, = X +2, then it immediately ~ Therefore, by induction?,, > ,, | Vi+k >n.
follows thattY,, < X, sincetY < X by the induction ~ We now prove (10) for Case 4.
hypothesis. If diz+k = 1, theni + k = n is the new packet according
If ¢, =d, andt’, | = tX + 2, then we haveX + 2 > to statez (because the new packet will be placed at the end
dX, >d, =t of the queue at nodé in the equivalent linear network).

If 4, =t¥+2andtX, = ¥, then we havell,, > Suppose that in state we havei = n — k > m. We need
2>t r2=14 . to show thatt , < tZ. We note that the arrival of the

Thus, the result holds fax-1. Hence, by inductiortZU < tf new packet at nodd in the equivalent linear network at
Vi. most increases the time for packets that leave after the new

Also, from Case 1, fog, tZ,, = #,, when packet + k is packet by one slot, i.ef! , < X , | + 1. We now have

one that leaves before the newly arrived packet in state Y , <X |, 4+1< t¥_1 + 1 = tZ. Hence, (10) holds.
Therefore, we havel < X < ¢ Hence,tY < We prove the other cases by contradiction. Suppose that

2 . t¥ > ¢ for somei.

Case 3: Packatin stateu is either the newly arrived packet If tf = dJ, then we havet? | > dX | = df = ! >

or leaves before the newly arrived packet, and patket in tirk > t¥+k_1- This clearly contradicts the fact that< y.

= £
i+k — Vitke



This implies thatt} = t¥ | 4 2. Sy and S3 belong to the setS’, the child D represents

If t£,, >, +2 we havet! =¥ +2 >+, > M, and the children®, F, and G belong to the set\/’.
tf,,_1 + 2. Thereforet! | > tZ, . Iteratively substitute When D transmits toS, or S3, one of the children, F,

i =4 — 1 until eitheri = m in stateu ori + k < n in statez 0or G can simultaneously transmit t§; under the one-hop
If i =m, thentY | > tiZJrkfl which contradicts either Case 2interference model. However, wheh transmits toS;, no
or Case 3 depending on whethier k < n ori + k > n, re- other transmissions can be scheduled in the network.
spectively. Ifi+k < n, thent¥ | > tf+k_1 contradicts Case 2. We now develop a causal sample-path optimal potigy

Hence, (10) holds for Case 4. for ClassB forests.

Since the four cases exhaustively include all possiksjtiePolicy mp: Policy 7 for ClassB forests uses the following
the lemma follows. m schedule during any given slot.

We now proceed to the proof of Theorem 1. « Ifthere is at least one packet in any nodeViff (destined
Proof of Theorem 1: to S), and at least one packet W destined to one of

Proof: For t = 0, we haveX’(0) = X(0), and hence the roots inS’, then schedule a packet from one such

XO(t) < X(t) att = 0. Assume thai®(t) < X(t) is true for node (having a packet) id/’, and a packet from\/
somet. We show that it holds fot 4+ 1 as well. Letl (¢t + 1) to one such root (for which a packet is destined)Sih
be the activation vector under some polieyat ¢t + 1. Then simultaneously.
from Lemma 3 we have « If there is at least one packet in any nodelifi (destined

to S), no packets inV/ destined to any of the roots i,

0 0
(X(t) + Rga(X0(1))) < X(t) + RI(t +1). (11) and at least one packet M destined taS, then schedule

The arrival vectorA(t + 1) for the equivalent linear network a packet fromM to S.
can be written as « Ifthere is at least one packet in any nodeliff (destined
N to S), and no packets if/, then schedule a packet from
Alt+1) = ZAi(t + 1. (12) one such node (having a packet)if'.
P « If there are no packets in any node id’, and at least

one packet in}M destined toS, then schedule a packet

Hence from Lemma 4 and the relation (11) we can see that
from M to S.

N « If there are no packets in any node/if’, no packets in
XUt+1) = X01) +Rea(X(1) + Z Ai(t +1)e M destined toS‘,) and at Ieastyone packet Mpdestined
N =t to one of the roots ir’, then schedule a packet froid
<X +RI(E+1) + ZAi(t L) to one such root irt’ (for which a packet is destined).
= The intuition behind policyrp is the following. During any
= X(t+1). slot, if it is possible to schedule two packets simultangous

) _ _ then g will schedule two packets. Since no more than two
Since we are only interested in the sum of all the queygckets can leave the system during any slot, the sum of the
lengths, the result for the equivalent linear network hdtas queue lengths is minimized. If only one packet can be sched-
the forest topology as well. B yled, then it either means that there are no packets in any nod

Thus, this completes our analysis for Cladsforests, and i 3/ destined toS, or that there are no packets destined
we understand that a sample-path optimal policy for theﬁ?any root inS’. In this caserz prioritizes packets frond/
forests is to simply construct an equivalent linear netwarld {5 g The reason is that when a packet is scheduled figm
schedule packets in the equivalent linear network accgrin 1o g, no other packet can be scheduled simultaneously. On the

the one-hop interference model. other hand, if a future arrival occurs such that there is &giac
from one of the nodes id/’ destined toS, and a packet in
B. ClassB M destined to one of the roots iff, then these two packets

We now analyze Clas8 forests. We recall that these ar@n simultaneously leave the system in this slot. For ircgtan

the class of single-hop forests where all the roots of thedfor in Figure 1(b), suppose that there is one packeD atestined

) ﬁo S1, and one packet al destined toS;. We schedule the
have exactly one common child, and at most one root has other : . .
children. packet fromD to .S; so that in the next slot if a packet arrives

We define the following notation for this class. We denotal D destined 1a5; (say), two packetsK to 51 and D o 55)

the root of the forest that has multiple childrenisand the Can simultaneously leave the system in this slot. On therothe

set of other roots (that have one common child)SsWe hand, if we h?‘d SChedUqu the packet frdfrto 5, then fp_r
: . : the same arrival pattern, it would have taken two additional
denote the child node that is connected to multiple roots

M, and the set of children whose only parent is ngtlas ot for the packets ab .to 51 and$; to Ieaye the system.
M We now prove thatrg is sample-path optimal for Clad$

A node in M’ can simultaneously transmit t§, when forests.
M transmits to a node ir’. However, whenM transmits Theorem 2. Policy g is a causal sample-path optimal
to S, no other links in the network can be activated. Fascheduling policy for Clasé#3 forests, i.e., when policyg
example, in Figure 1(b), the rodt; representsS, the roots is used to schedule any given ClaBsforest, at each time



slot, for any sample-path traffic arrival pattern, the sum of « Suppose thaf\/ has at least one packet to at least one
the queue lengths of all the nodes in the given Cladsrest of the roots inS’, and none of the nodes i’ have any

is minimum among all policies. packets. Again,rp will schedule exactly one packet,
and this packet would either be froM to S if M has
such a packet, or it would be frod¥ to one of the roots

in S’ (if M has no packet destined &). The argument
that no more thann + 1 packets can leave the system

. . . aftert + 1 slots is now similar to the previous case.
Consider time slot = 1. The maximum number of packets Y h ber of kets leaving th el
that can leave the system is two during any time slot (if there €NCe, the number of packets leaving the system a

exists a packet from one of the nodesiiff to S, and a packet slots is also maximum. : .
from M to one of the roots inS’). If there exists two such Hence, policyr; is a causal sample-path optimal policy for

packets at slot = 1, policy 7p will schedule these packets.C|aSS_B forests. ) =
Otherwise, at most one packet can leave the system during th& IS completes our analysis for ClaSdorests. We will see

slot, and if there exists a packet in the systam will schedule in Section IV tha'; for any other single-hop fqrest str_upture
it. Hence, for time slot — 1, the number of packets leaving!N€"€ d0€s not exist a causal sample-path optimal poliag. Th

the system is maximum. Hence, the sum of the queue IengmganS th"_"t no two roots can have more than one ,Ch'ld’ and
at the end of the first slot is minimum among all policies. no two children can have more than one root as their parents.

Assume that the result is true at time slot_et the number
of packets that left the system by slotbe m, and this is C. ClassC

Proof: First, it is clear that policyrg is causal. To show
that it is sample-path optimal, we prove that the number of
packets leaving the system is maximum at any given time
slot. We do this by induction.

maximum. We finally investigate Clasg forests. These forests are
Consider time slot + 1. actually trees as they have only one root. We consider trees
If there are no packets in the system, then the result\i;ere all but one of the root’s children is not a leaf node.

obvious. The structure of the sub-tree rooted at the child (of the)root

If there exists a packet from one of the nodes\ifi to S, that is not a leaf node can be arbitrary. We also note that if
and a packet from\/ to one of the roots irt’, thenwz will  the root has only one child, and that child is not a leaf node,
schedule two packets, and the number of packets that le@ven this structure also belongs to Clads In fact, we use
the system aftet + 1 slots ism + 2, which is maximum by this information to develop a scheduling policy.
the induction hypothesis, and by the fact that no more thanwe propose a causal poliay- for this class, and show that
two packets can leave the system in any single time slot. it is sample-path optimal.

Consider the case in which either none of the node®/in Policy 7: This policy uses the following scheduling rules at
have a packet t&, or M does not have a packet to any otny time slot.
the roots inS’. In this case, at most one packet can leave the, |f the root’s child that is not a leaf node has a packet,

system. We now show that no more than+ 1 packets can then schedule the root's child. Do not schedule the
leave the system aftér+ 1 slots according to any scheduling  other children of the root. Schedule the rest of the tree
policy. We consider the following cases. according to policyr. If all of the root's children are
« Suppose thafl/ has no packet to any of the roots i, leaf nodes, pick any one of them that has a packet to
and at least one of the nodes M’ have at least one transmit, and schedule it. Do not schedule the other
packet toS. Then,7p will schedule exactly one packet. children.
This packet would either be from/ to S if M has such  « If the root’s child that is not a leaf node does not have
a packet, or it would be from one of the nodesliff to S a packet, schedule any one of the root’s other children
(if M has no packet destined ). In either caseymn + 1 that has a packet, and do not schedule the other children.
packets would leave the system aftet 1 slots. Now, Schedule the rest of the tree according to poticy.

suppose that according to some poliy two packets Theorem 3. Policy n¢ is a causal sample-path optimal

leave the system in slat+ 1. This means that, according . . : .
t0 7, M has at least one packet to one of the roots %chedullng policy for trees where the root has multiple chil

S'. and at least one of the nodes i’ have a packet to dren, and all but one of the children are leaf nodes.

S. Policy mp (in a previous slot) would have scheduled  Proof: Clearly, policy n¢ is causal. To show that it is

a packet fromM/ to one of the roots irt” either if one sample-path optimal, we prove that the number of packets
of the nodes inM’ had a packet t&, or if there were leaving the system is maximum at any given time slot. We do
no packets destined t§. Since a packet fromi/ to one this by induction. If the number of packets that have exited
of the roots inS’ exists according to policy:, then this the system by any slot is maximum among all policies, it
packet was either not scheduled along with a packet framplies that the sum of the queue lengths of all the nodes in
one of the nodes i/’ to S, or no packet was scheduledthe network is minimum at any time slot.

during this slot. In either scenario, the number of packets Consider time slot = 1. If one of the root’s children have a
that could have exited the system by stotan at most packet, then this packet will be scheduled, and one pacliet wi
bem — 1. Therefore, at most: + 1 packets can exit the exit the system. Clearly, this is maximum among all policies
system according to any scheduling policy aftei slots. since by the one-hop interference model no more than one
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packet can leave the system in any time slot for Cl{agwests. e
If none of the root’s children have a packet, then no packit wi
reach the root, and this is also maximum among all policies.
Assume that the result is true for time slotSuppose that
the number of packets that have exited the system isym ° e
according to policyrg, i.e., m is the maximum number of
packets that could have exited the system according to any

policy aftert slots. Q
Consider slott + 1. There are two cases. e
Case 1: At least one of the root’s children have a packet to
schedule Fig. 3. Tree with no sample-path optimal scheduling policy

In this case, according toc, exactly one of these children
will be scheduled, and the number of packets that exit th?t _q h val ab. A that th
system byt + 1 is m 4+ 1. This is maximum since at most onegt ¢ = 1, We have an arriva - ASSUMeE 1hat there are no

packet can exit during a time slot, and the maximum numb pivals at any other node, and that there are no futureadsriv
of packets that have exited the s;}stemtb'y m in the system. It then takes an additional three time slats fo

C 2 N f th ts child h ket {ge packets aB and D to exit the system.
ase one of the Toots children have a packe Suppose that we had pickdel to schedule at = 0. Then,

schedule.
This means that all the packets from all the root’s childre%tt = 1, A has one packet left to schedule whif2 has_no
kets left. In this case, at= 1, A would have transmitted

that are leaf nodes have exited the system, and there arePR

new arrivals at these nodes. Further, the branch correis’m)notc.) thﬁ root a{\ditzvo_uld2 h%ve tralrésramedtlts pail:eé tﬁ]
to the root's child that is not a leaf node is schedulegd™U!tan€ously. o~ wou ave transmitte 1S

according to policyr, at all time slots. Therefore, the packet to the root. Therefore, it just takes two time slots fo

number of packets that have exited from this branch at aﬁ{;’\tlhe pickg;s to Exg theksy(/étem. hedul - ith
time slot is maximum because of the optimality of for ote that if we had pickeds to schedule at = 0 without

ClassA forests. Hence, the maximum number of packets thlé@owmg about futurg amva_ls, an arrl\_/al @tatt = 1 would
have exited the system biy+ 1 is alsom. have ensured that picking in the earlier time slot was sub-

Therefore, by induction, at each time slot, for any arrivgPumal.

pattern, the number of packets that have exited the syst nf Nus, this example; shows that even for this simpl_e tree W.ith
is maximum among all policies, and henee is a causal our nodes, there exists no causal sample-path optimatypoli

sample-path optimal scheduling policy for Clag$orests. m Itis now stralghtforvv_ard to see that for a general tree wlthaee.
root has multiple children that are not leaf nodes, therstgxi

no causal sample-path optimal policy. This is because such a
IV. NON-EXISTENCE OF SAMPLE-PATH OPTIMAL tree would contain the above example as a part of the steictur
PoLICIES So by simply considering the arrival pattern described abov
In the previous section, we studied three classes of forest8d assuming that there are no packets and arrivals in the
Classesd, B, andC, for which there exists causal sample-patfest of the tree, the same argument would apply. ]
optimal policies under the one-hop interference modelhis t We can now completely classify tree structures for which
section, we show that for any other forest structure, theredausal sample-path optimal policies exist under the ome-ho
a traffic arrival pattern for which there cannot exist a chustterference model.
sample-path optimal policy.
We start by considering a tree structure that is not a Glas
tree, i.e., the root has more than one non-leaf child.

Theorem 5. A causal sample-path optimal scheduling policy
Under the one-hop interference model exists in a given tree
structure if and only if at most one of the root’s children is
Theorem 4. There exists no causal sample-path optimdlot a leaf node.

scheduling pollqul f%rllg tree _structl_Jtrhe |ntv¥h|ch_thefrotot hgst Proof: The result follows from Theorem 3 for Clags
or more non-leaf children, i.e., without knowing futurefti@ ¢ 1o 414 Theorem 4. -
arrivals, for such trees, there is at least one type of traffic ; . .
. ; . .~ We now consider a forest in which more than one root has
arrival pattern for which no sample-path optimal schedglin ;
. . more than one child.
policy exists.
Proof: Let us begin by first considering the smallest tre‘(le'heorer_n 6. T_here_ exists no caus_al sample-p_ath optimal
. . . Y scheduling policy in a forest in which there exists at least
with multiple non-leaf children, as shown in Figure 3. As:ciumtWO 10ots each with at least two children
that att = 0, nodesA and B have one packet each whi@ ’
andD have no packets. In the absence of information of future  Proof: First, note that we only consider connected forests.
traffic arrivals, we have no choice but to pick onefor B Therefore, the simplest structure in which two roots have tw
to schedule at = 0. children each is given in Figure 4(aJ; and S, are the roots.
Suppose we pickd to schedule. So at = 1, A has no A is the common child of; and.S,, B is a child ofS;, and

packets left whileB has one packet left. Now suppose thaf is a child of Ss.
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B has S, and S5 as its parents.
Consider the following traffic arrival pattern. At time slot
t = 0, there exists one packet at destined toS,, and one
packet atB also destined taS,. We can either decide to
scheduled or B during the first slot. If we decide to schedule
A, and at time slot = 1, we get a packet aB destined to
Ss, then it would take two additional slots for the two packets
at B to leave the system. On the other hand, if we had
scheduledB during the first slot, then during the second slot,
the packet fromA to S,, and the packet fronB to S5 could
have been scheduled simultaneously (since these links o no
interfere under the one-hop interference model), and would
hence only require one more time slot to leave the system.
(b) Two children each have two roots as parents The argument is similar if we had decided to schedBle
Fig. 4. Modified (single-hop) Clas® forests during the first slot.
Thus, without knowing the future traffic arrival pattern,
there exists no sample-path optimal scheduling policy lig t
Consider the following traffic arrival pattern. At time slotstructure under the one-hop interference model. ]
t = 0, there exists two packets af, one destined t&;, and  From Theorems 6 and 7, we can understand the reasoning
the other toS,. There are no other packets in the systempehind the topology restriction for Clags forests. Clearly,
Without knowing about future arrivals, we can either scheduif no two roots can each have at least two children, and no
the packet destined t6,, or the packet destined 18, during two children can each have at least two roots as parents, then
the first slot. single-hop forest structures can have only one root having
Suppose that we schedule the packet destinedSto multiple children, and only one child having multiple paisn
Suppose that at slot = 1, a packet arrives at nodé' We now look at multi-hop forest structures. We first consider
(destined toS,). Then, it clearly takes two more slots forthe structure in which one of the children that has only one
the packet fromA to S;, andC to S; to leave the system. rgot as its parent is not a leaf node.
On the other hand, if we had scheduled the packet frbm ) - )
to S, during the first slot, then during the second slot, theh€orem 8. Consider a modified ClasB forest structure in
packet fromA to S, and the packet fron@' to S» can be WhICh one of the children that has only one root as its pargnt
simultaneously scheduled. Therefore, it takes only oneemdf Ot & leaf node. There exists no causal sample-path optima
time slot for the packets to leave the system in this scenarseduling policy for such forest structures.

Suppose that we schedule the packet destineg} tduring Proof: First, if the root in the Class3 forest having
the first slot. Then, at slat= 1, if a packet had arrived @  mytiple children has more than one child that is not a leaf
(destined taS1), then it would have taken two more slots fofhgde, then we know that there can exist no sample-path
the packet fromA to 5y, and B to S to leave the system. gptimal policy by Theorem 4.

However, if we had scheduled the packet fraito Sy during  Consider the simplest structure (Figure 5(a)) in which we
the first slot, it would have only taken one time slot for th@aye two roots,S; and S,. S; hasA and B as its children,

remaining packets to leave the system. ~ andS, hasB as its only child. Also, nod€ is the child of
Thus, without knowing whether a packet arrival is going tggge A. Clearly, without node, this structure is a Clas8
occur atB or C, there doesn't exist a sample-path optimalirycture.

policy.
As argued previously, since any forest structure in which @ @ a
there exists at least two roots each with at least two childre @
contains the forest structure in Figure 4(a), by simply @bns
ering the traffic arrival pattern described above, and n&gtasc
in the rest of the system, we can conclude that there exists @ e 0 e
causal sample-path optimal policy in such forests. [ ]
We next consider the structures where at least two children
have at least two roots as their parents.

(a) Two roots each having two children

Theorem 7. For forest structures in which at least two G e
children have at least two roots as their parents, theretsxis(a) Modified Class3 forest with node(b) Modified Class3 forest with node
no causal sample-path optimal scheduling policy. A having a child B having a child

Proof: As before, we look at the simplest forest structurgig- 5. Modified (multi-hop) Clas$ forests
in which two children have two roots as their parents. Caarsid
the forest structure in Figure 4(b) in which there are thoeg Consider the following traffic arrival pattern. Supposettha
S1, S2, andS3. Node A hasS; andS; as its parents, and nodeat time slott = 0, A has one packet destined 1, and B



12

has one packet also destinedSn There are no other packetsone additional slot for these packets to leave the system.

in the system. Without knowing about future arrivals, we can Therefore, no causal sample-path optimal policy exists for

either scheduled or B during the first slot. As argued for these forests. ]

earlier proofs, we show that in either case, there is a trafficTo complete our analysis on multi-hop forests, we now

arrival pattern such that a sample-path optimal policy eanrstudy structures in which two branches with a common node

exist. lead to two different roots. This common node must be at a
First, if we were to scheduld during the first slot, and if a depth greater than one from at least one of the roots. If the

packet destined t6, arrives atB at slott = 1, then it would common node is at depth one from both the roots, then this

take two more slots for the packetsiatdestined toS; and.S2  structure belongs to one of the single-hop structures disa

to leave the system. On the other hand, if we had schedufg@viously.

B during the first slot, then it would have taken only on

additional slot since the packet frorh to S; and the packet

from B to S, could have been simultaneously scheduled.

erheorem 10. Consider a forest with at least two roots. If there
exists two roots in this forest such that the common node that

However, if we were to always schedul during the first branches out to these rootslishops away from one root, and

slot, and if a packet destined f§ arrives at nod€” at slott = 2 _hOpS away from the other, and e_|thier> 1.’ Or.ZQ >.1’ there

1, then it would take three more slots for the packets @ind exists no causal sample-path optimal policy in this streectu

C to reachS;. On the other hand, if we had schedulédiur- Proof: We consider two cases.

ing the first slot, then it is easy to see that it would only have Case 11, # I,.

taken two additional slots for these packets to leave theBys  Suppose that nodé (Figure 6(a)) is the common node that
Thus, there exists no causal sample-path optimal scheduliitanches out to the roots$; and S,. Let A be l; hops away

policy for such forests. B from S, andl, hops away fromS,. WLOG, assume that
We now consider structures in which the child that ig # 1, andl; > ly. Sincel; > 1, let B be the parent ofd

common to all the roots is not a leaf node while the othef the branch leading to the rodt . Consider the following

children having the same root as their parent are leaf nodagaffic arrival pattern. Suppose that at time slot 0, there

Theorem 9. Consider a modified ClasB structure in which €XIStS one packet at destined toS;, and another packet at

the child that is common to all the roots is not a leaf nodé destined taS.
while the other children having the same root as their parent

are leaf nodes. There exists no causal sample-path optimal \ @
scheduling policy for such forest structures. )

Proof: We first recall that if more than one child is not
a leaf node, then there exists no causal sample-path optimal
scheduling policy for such a structure by Theorem 4.

Consider the simplest structure (Figure 5(b)) in which ¢her
are two roots,S; and.S,. S; hasA and B as its children, and
Ss hasB as its only child. Further, nod€ is a child of node
B.

Consider the following traffic arrival pattern. Suppose
that nodeC has one packet destined £ and one packet
destined toS; at time slot¢ = 0. Suppose that we schedule
the packet destined t8;, and suppose that at time slot 1,

a packet arrives at nodd destined toS;. Then, by slot

t = 2, only one packet can leave the system. However, if we
had scheduled the packet destined fréhto S, during the
first slot, then it is easy to see that two packets could have
left the system by slot = 2.

Now, suppose that the policy was to always schedule the
packet destined t&> from C. Then, at slott = 1, we will Fig. 6. 11 >1oriz>1
have one packet aB destined toS,, and one aC destined
to S1. Suppose that there are no new arrivals at slet 1. Sincel, < l1, we have to schedule the packet frafnto
Then, we will schedule the packet from to S, during the S, during the first slot. Otherwise, a policy that schedules
second slot. Again, suppose that there are no new arriviiss packet will have one packet less in the system at time
at slot¢t = 2. We will now schedule the packet fro@ ¢ = [, while any other policy will have both the packets
during the third slot. Now, suppose that a packet arrives iatthe system at slot = 5. Suppose that we schedule the
A destined toS;. Then, it will take two more slots for the packet fromA to S, during the first slot. It would then take
packets atd and B to reachS;. On the other hand, if we [; additional time slots for all the packets to leave the system
had scheduled the packet frof destined toS; during the This can be reasoned as follows. The packet destinesl to
first slot, it can be easily shown that it would have only takewill not interfere with the packet destined & in any of the

(b) li =12
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future slots. So, it will leave the system ip— 1 slots. Also, We have thus completely characterized the existence of
it will take [, slots for the other packet from to reachS;. causal sample-path optimal scheduling policies in anysfore
On the other hand, suppose that we had scheduled the paskeicture under the one-hop interference model. We again
from A to S; during the first slot. In this case, at stot= 1, we note that we have only considered connected forests, and tha
will have one packet at nodg destined taS;, and one packet if we had disconnected structures, we simply have to apply
at A destined taS,. In the second slot, the packet & and Theorem 11 separately to each connected structure. If there
the packet at nodd destined toS; will be scheduled simulta- exists causal sample-path optimal policies in all the cotet
neously. From this slot, the packet destinediowill reach S, structures, there exists a causal sample-path optimatypoli
in [, —1 slots, and the packet &'s parent destined t8; will  for the entire (disconnected) structure. If there does nast e
reachsS; in [y —2 slots. Hence, from the first slot, it only takesa causal sample-path optimal policy for even one of the

I, — 1 additional slots for all the packets to leave the systernonnected structures, there does not exist a causal sarathle-
Since we have to schedule the packet frdnto S» during optimal policy for the entire (disconnected) structure.

the first slot irrespective of whether there exists a packet a
destined toS;, it follows that even in the absence of future
arrivals, there does not exist any optimal scheduling polic

V. DISCUSSION

that minimizes the sum of the queue lengths of all the nodeéNhiIe having a sample-path optimal policy is ideal, they

in the system at each time slot for this forest structure

Case 21 =10, =1>1.

Consider Figure 6(b) in which nodé is the common node
that branches out to the roof§ and.S;. Node A is [ hops
away from bothS; and.S;. Let B be the parent ofd in the
branch leading t&,, andC be the parent ofd in the branch ¢
leading t0S2. Suppose that at time slot= 0, we have two
packets atd, one destined t&;, and the other destined 5.

Suppose that we schedule the packet destinefi tduring
the first slot. If we do this, and a packet destinedbtoarrives
at A at slott = 1, it would takel+ 2 additional slots for all the

exist for very limited topologies. We briefly discuss this
limitation, and also make a number of interesting obseowati
about other metrics for delay studied in the literature for
tree structures. Designing such policies for forests is &no
problem.

Non-existence of sample-path optimal policids seen
from the previous sections, sample-path optimal policies
exist in very limited forest topologies. Since this metric
requires optimality at each time slot and any traffic arrival
pattern, it is unlikely to exist for many topologies. As
we have shown, simple traffic arrival patterns can be

packets to leave the system (as argued in Case 1). On the other constructed to prove that such policies do not exist for

hand, if we had scheduled the packet destineshtduring the
first slot, then at slot = 1, we will have one packet a4 des-
tined to Ss, one packet af” destined taS,, and one packet at
A destined toS;. In the second slot, we would have scheduled
the packet a’ destined toS,, and the packet atl destined
to .S; simultaneously. It would have then taken an additidnal *
slots for all the three packets to leave the system (since non
of the packets would have interfered with the others during
any of the future slots, and the farthest packet @ps from
Ss). Therefore, it would have only takent 1 additional slots
from the first slot for all the packets to leave the system.

Suppose that we schedule the packet destines} tduring
the first slot. If we do this, and a packet destinedbtoarrives
at A at slott = 1, it would again takd + 2 additional slots
for all the packets to leave the system. However, if we had
scheduled the packet destined%p during the first slot, then,
as argued above, it would have only takes 1 additional
slots for all the packets to leave the system.

Thus, there exists no causal sample-path optimal schegulin
policy for such forests. [ ]

Theorem 11. There exists a causal sample-path optimal )
scheduling policy for a given forest structure under the-one
hop interference model if and only if the structure belorms t
ClassesA, B, or C.

Proof: The result for the existence of causal sample-
path optimal policies for Classed, B, andC follows from
Theorems 1, 2, and 3, and the result for the non-existence
of causal sample-path optimal policies for any other stmect
follows from Theorems 4, 6, 7, 8, 9, and 10. [ |

many topologies. The primary reason for its existence
in the three classes of forest topologies identified here is
the simplicity of the topology for ClasB forests, and the
relationship to scheduling in an equivalent linear network
for ClassesA and(C.

Large deviations metricln [11], Venkataramanan et al.,
have shown that for the convergecasting problem in
general trees, Tassiulas’s policy is optimal in the large
deviations sense. However, this policy is actually not
even evacuation time optimal, i.e., even in the absence
of arrivals, it does not minimize the time by which all
the packets leave the system. For instance, consider the
following tree (Figure 7) with four nodeg, B, C, D, and

a root. Suppose that, B, and D have one packet each.
According to the policy in [11], eitheA or B can be cho-
sen to schedule arbitrarily during the first time slot. How-
ever, one can easily see thatdfwere chosen to schedule
during the first time slot, the time to evacuate the system
is 3 slots. But if B were chosen to schedule during the
first time slot, the time to evacuate the system is 4 slots.
Evacuation time optimalityln [2], Florens et al., have
proposed an evacuation time optimal policy for general
trees by prioritizing the branches of the tree according
to the time required to evacuate each individual branch.
From the proof of Theorem 10, we can see that a policy
that is evacuation time optimal need not minimize the
sum of the queue lengths of all the nodes at each time
slot (even if it evacuates the system in minimum time).

Both these metrics are interesting since they provide agtim
scheduling policies (in their respective senses) for ganer
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trees. However, the evacuation time metric does not considg] S. Hariharan and N. B. Shroff. On optimal energy efficieanvergecast-

arrivals, and there exists instances where the policy baesed

large deviations is not evacuation time optimal. Therefoaee

should be taken when designing scheduling algorithms baség]

on these policies.

Fig. 7. Arbitrarily choosing branches is not evacuationetioptimal

VI. CONCLUSION
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