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Low-complexity Optimal Scheduling over
Correlated Fading Channels with ARQ Feedback

Wenzhuo Ouyang, Atilla Eryilmaz, and Ness B. Shroff

Abstract—We investigate the downlink scheduling problem
under Markovian ON/OFF fading channels, where the instan-
taneous channel state information is not directly accessible,
but is revealed via ARQ-type feedback. The scheduler can
exploit the temporal correlation/channel memory inherent in the
Markovian channels to improve network performance. However,
designing low-complexity and throughput-optimal algorithms
under temporal correlation is a challenging problem. In this
paper, we find that under an average number of transmissions
constraint, a low-complexity index policy is throughput-optimal.
The policy uses Whittle’s index value, which was previously used
to capture opportunistic scheduling under temporally correlated
channels. Our results build on the interesting finding that, under
the intricate queue length and channel memory evolutions,
the importance of scheduling a user is captured by a simple
multiplication of its queue length and Whittle’s index value.
The proposed queue-weighted index policy has provably low
complexity which is significantly lower than existing optimal
solutions.

I. INTRODUCTION

In wireless networks with randomly fluctuating channels,
intelligently scheduling users is critical for achieving high
network efficiency. Under the assumption that the scheduler
possesses accurate instantaneous Channel State Information
(CSI), maximum-weight scheduling algorithms (e.g., [1]-
[3]) are known to be throughput-optimal, i.e., no scheduling
policy can ensure system stability for arrival rates that are
not supportable by a max-weight scheduler.

In practice, accurate instantaneous CSI is difficult to
obtain at the scheduler. Hence, in this work we consider
the important scenario where the instantaneous CSI is not
directly accessible to the scheduler, but is instead revealed
through ARQ-type feedback only after each scheduled data
transmission.

The time-correlation or channel memory inherent in the
fading channels can be exploited by the scheduler for more
informed decisions, and hence to obtain large throughput
gains (e.g., [4][5]). In this paper, we incorporate the temporal
correlation by modeling the fading channels as Markov-
modulated ON/OFF processes.

Under imperfect CSI, channel memory, and limited net-
work resources, designing throughput-optimal scheduling
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schemes is highly challenging. This is because the sched-
uler needs to optimally balance the intricate ‘exploitation-
exploration tradeoff’, i.e., to decide whether to exploit the
channels with more up-to-date CSI, or to explore the chan-
nels with outdated CSI. The packets destined to each user
are stored in a corresponding data queue before transmis-
sion. Due to this temporal correlation and imperfect ARQ-
based CSI, to develop throughput-optimal scheduler requires
a complex characterization of the interplay between user
scheduling, channel memory evolution and queue evolution.
Therefore, traditional Lyapunov drift minimization technique
do not apply in this context.

Under the aforementioned complications, traditional Dy-
namic Programming based approaches can be used, but are
intractable due to the well-known ‘curse of dimensionality’.
In related works [5][6], a simple round-robin based schedul-
ing policy is shown to possess the throughput-optimality
property. However, such a scheme is only optimal in the
regime of a large number of users with identical Markovian
channel statistics. In [7][8], a throughput-optimal frame-
based policy is proposed. This policy relies on solving a
Linear Programming in each frame, which is hindered by the
curse of dimensionality, where the computational complexity
grows exponentially with the network size.

In this work, we study throughput-optimal downlink
scheduling under imperfect CSI over heterogeneous Marko-
vian fading channels. We assume that each user occupies
a dedicated channel, i.e., all users can transmit simultane-
ously, but the long-term average number of transmissions is
limited. Such a constraint can be used to limit the energy
consumption or interference effect depending on the context.
An example to limit the energy consumption is the green
cellular networks (e.g., [9]-[11]). It is estimated that the
cellular base stations consume 4.5 GW of power globally,
which corresponds to more than 40 million metric tons of
CO2 emission and over $10 billion electricity bill annually
[9][10]. With energy expenditure rising by 15-20% each year,
an important objective in green cellular networks design is
to reduce the long-run average number of data transmissions
to decrease energy consumption [10]. Therefore, it is of
great interest to understand the relationship between the
achievable throughput region and the constraint on the long-
term average number of transmissions. In the meanwhile,
restricting the average number of transmissions also helps
to reduce interference between concurrent transmissions in
the network. Specifically, our contributions are as follows:
• Under the constraint on the average number of transmis-
sions, we propose a low-complexity throughput-optimal pol-
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Fig. 1. Two state Markov Chain model.

icy. The policy operates over separate time frames, where the
per-frame computational complexity is at most O(N logN)
with the number of users N . Therefore, the policy does not
suffer from the curse of dimensionality.
• The proposed policy builds on Whittle’s index analysis of
Restless Multi-armed Bandit Problem [12], where Whittle’s
index value is used to measure the importance of scheduling
a user under the time-correlated channel [13]. We find that,
interestingly, under the coupled queue length and channel
memory evolution, the importance of scheduling a user is
measured by a simple multiplication of the queue length and
Whittle’s index value.

II. SYSTEM MODEL

A. Downlink Scheduling Problem

We consider a time-slotted wireless downlink network
with one base station and N users, where each user i
occupies a dedicated wireless channel. The channel state of
user i, denoted by Ci[t] at slot t, evolves according to an
ON/OFF Markov chain across time slots within the state
space S = {0, 1}, independently across channels. When
the channel is in state ‘1’, one packet can be successfully
transmitted, otherwise no packet can be delivered 1. As shown
in Fig. 1, the channel state evolution is represented by the
transition probabilities

pi11 :=Pr
(
Ci[t]=1

∣∣Ci[t−1]=1
)
,

pi01 :=Pr
(
Ci[t]=1

∣∣Ci[t−1]=0
)
.

We assume that the Markovian channels are positively
correlated, i.e., pi11 > pi01 for i=1, 2, · · · , N , which has been
commonly used to model the wireless channels in slow fading
environment (e.g., [5][13]).

At the beginning of each time slot, the scheduler chooses
users for data transmission. The scheduling decisions are
made without the exact knowledge of the channel state in
the current slot. Instead, the accurate ON/OFF channel state
of a scheduled user is revealed via ACK/NACK feedback
from the receiver, only at the end of each slot following data
transmission.

We consider the class Φ of (possibly non-stationary)
scheduling policies that make scheduling decisions based on
the history of observed channel states, arrival processes, and
scheduling decisions. Under the aforementioned restrictions
on average energy consumption, the scheduling schemes are

1Our results easily generalize to the scenario where multiple packets,
different across channels, can be transmitted in state ‘1’.
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Fig. 2. Belief value evolution.

subject to the constraint that the long-term average number
of scheduled transmissions is under M ,

lim sup
T→∞

1

T
E
[ T−1∑

t=0

N∑
i=1

aϕi [t]
]
≤ M, (1)

where aϕi [t] indicates whether user i is scheduled at slot t
under policy ϕ ∈ Φ.

Data packets destined for different users are stored in
separate queues before transmission. The queue length for
user i is denoted by qi[t] at slot t. We assume that the packet
arrivals for the i-th user form an i.i.d. process Ai[t] with mean
λi and a bounded second moment. Hence, the i-th data queue
evolves as qi[t+1]=max{0, qi[t]−ai[t]·Ci[t]}+Ai[t].

B. Belief Value Evolution

The scheduler maintains a belief value πi[t] for each
channel i, defined as the probability of channel i being
in state 1 at the beginning of t-th slot conditioned on the
past channel state observations. The belief values are hence
updated according to the scheduling decisions and accurate
channel state feedbacks as follows,

πi[t+ 1] =


pi11 if ai[t] = 1 and Ci[t] = 1,
pi01 if ai[t] = 1 and Ci[t] = 0,
Qi(πi[t]) if ai[t] = 0,

(2)

where Qi(x)=xpi11 + (1−x)pi01 is the belief evolution oper-
ator when user i is not scheduled in the current slot. In our
setup, the belief values are known to be sufficient statistics
to represent the past scheduling decisions and feedback [14].
In the meanwhile, the belief value πi[t] is the expected
throughput for user i if it is scheduled in slot t.

For the i-th user, we use bic,l to denote the state of its belief
value when the most recent channel state was observed l time
slots ago to be c ∈ {0, 1}. The closed form expression of bic,l
can be calculated from (2) and is given as follows,

bi0,l=
pi01−(pi11−pi01)

lpi01
1 + pi01 − pi11

, bi1,l=
pi01+(1−pi11)(p

i
11−pi01)

l

1 + pi01 − pi11
.

As depicted in Fig. 2, if the scheduler is never
informed of the i-th user’s channel state, the belief
value monotonically converges to the stationary probability
bis:=pi01/(1 + pi01 − pi11) of the channel being in state 1. We
assume that the belief values of all channels are initially set
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to their stationary values. It is then clear that, based on (2),
each belief value πi[t] evolves over a countable state space,
denoted by Bi={bis, bic,l : c∈{0, 1}, l∈Z+}.

C. Network Stability Region and Achievable Rate Region
We adopt the following definition of queue stability [16]:

queue i is stable if there exists a limiting stationary distribu-
tion Fi such that limt→∞ P (qi[t] ≤ q) = Fi(q). The network
stability region Λ is defined as the closure of the set of arrival
rate vectors supported by all policies in class Φ that does not
lead to system instability while abiding by the constraint (1).

In the meanwhile, we define the achievable rate region Γ
as the closure of the set of service rate vectors γ that can be
achieved by all policies, i.e.,

Γ=Cl
{
γ :∃ϕ ∈ Φ with γi= lim inf

T→∞

1

T
E
[ T−1∑

t=0

πi[t] · aϕi [t]
]
,

i = 1, · · · , N, subject to constraint (1)
}
, (3)

where Cl{·} denotes the closure of the set. The rate region
is hence a convex set, since, by appropriately randomizing
between any two policies, all the rate vectors between the
corresponding two rate points can be achieved.

The rate region Γ corresponds to the expected throughput
that can be achieved in the system with infinitely backlogged
queues. Therefore it provides an upper bound on the stability
region Λ. As we shall see in the following sections, the two
regions Γ and Λ turn out to share the same interior and are,
therefore, “equal”.

III. OPTIMAL POLICY FOR WEIGHTED
SUM-THROUGHPUT MAXIMIZATION

In this section, we consider a weighted sum-throughput
maximization problem. The policy introduced here, which is
based on scaling the Whittle’s index values, not only achieves
the transmission rate at the boundary of the achievable rate
region Γ, it also plays an important part in the throughput-
optimal policy in the next section that stabilizes all arrival
rates within the system stability region Λ– the main result
of the paper.

A. Weighted Sum-throughput Maximization Problem
Consider the following weighted sum-throughput maxi-

mization problem Ψ(r,M) for a given r = (ri)
N
i=1, where

the expected service rate for each user i is scaled by a positive
factor ri,

V (r,M)=max
ϕ∈Φ

lim inf
T→∞

1

T
E
[ T−1∑

t=0

N∑
i=1

ri·πi[t]·aϕi [t]
]

(4)

s.t. lim sup
T→∞

1

T
E
[ T−1∑

t=0

N∑
i=1

aϕi [t]
]
≤ M. (5)

The above problem Ψ(r,M) is a constrained Partially
Observable Markov Decision Process (CPOMDP) [15]. Con-
sider the optimal policy ϕ∗(r,M) (if it exists) for the problem
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Fig. 3. Illustration of the achieved rate vector λ∗(r) under policy ϕ∗(r,M)
with weight vector r.

Ψ(r,M) and let γ∗
i (r) = lim infT→∞

1
T E

[∑T−1
t=0 πi[t] ·

a
ϕ∗(r,M)
i [t]

]
. Then, as illustrated in Fig. 3, the achieved rate

vector γ∗(r) is at the intersection of the achievable rate
region Γ and the supporting hyper-plane H with normal
vector r. We proceed to characterize the optimal policy
ϕ∗(r,M).

Under uniform weights r = 1, an optimal policy for
problem Ψ(1,M) is proposed in [13] based on Whittle’s
indexability analysis of Restless Multi-armed Bandit Problem
[12]. Specifically, for channel i, a closed form Whittle’s index
value Wi(π) is assigned to each belief state π ∈ Bi. The
index value intelligently captures the exploitation-exploration
value to be gained from scheduling the user at the corre-
sponding belief state [13]. Details of Whittle’s indexability
analysis can be found in [12][13][17]. The closed form
expression of the Whittle’s index value Wi(π), π ∈ Bi is
given as follows [13][17],

Wi(π)=


(bi0,l−bi0,l+1)(l+1)+bi0,l+1

1−pi
11+(bi0,l−bi0,l+1)l+bi0,l+1

if pi11≤π=bi0,l<bis
pi
01

(1−pi
11)(1+pi

01−pi
11)+pi

01
if bis ≤ π ≤ pi11

(6)

It can be observed from (6) that Wi(π) monotonically
increases with π and satisfies Wi(π) ∈ [0, 1]. In the following
key lemma, we relate the optimal algorithm developed for
problem Ψ(1,M) to the problem Ψ(r,M) with arbitrary
weight vector r. The proof of the lemma can be found in
Appendix A.

Lemma 1. There exists an optimal stationary policy
ϕ∗(r,M) for problem Ψ(r,M) (cf. (4)-(5)), parameterized
by a threshold ω∗ and a randomization factor ρ∗∈(0, 1], such
that
(i) The scheduler maintains an r-weighted index value
W r

i (πi[t]) = ri ·Wi(πi[t]) for user i.

(ii) User i is scheduled if W r
i (πi[t])>ω∗, and stays idle

if W r
i (πi[t])<ω∗. If W r

i (πi[t])=ω∗, it is scheduled with
probability ρ∗.

(iii) The parameters ω∗ and ρ∗ are such that the long-term
average number of transmissions equals M .

Remark: Interestingly, by multiplying the Whittle’s index
values Wi(πi[t]) with ri, the optimal policy ϕ∗(1,M) pro-
posed in [13] for problem Ψ(1,M) is extended to solve the
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more general problem Ψ(r,M). This property is important
for designing the low-complexity and throughput-optimal
policy in Section IV.

B. State Space Truncation

Recall that the belief value evolves over a countable state
space Bi for user i and approaches the stationary value if
the channel is not active for a long time. This motivates us
to consider a truncated version of the belief value evolution
whereby the belief value of a user is set to its steady
state (i.e., its channel state history is entirely forgotten) if
the corresponding channel has not been scheduled for a
long time, say τ slots. The finite space truncation not only
facilitates more trackable analysis, it also provides a close
approximation to the countable state space. We let Bτ

i denote
the truncated state space for the i-th user, i.e., Bτ

i ={bis, bic,l :
c∈{0, 1}, l=1, 2, · · · , τ} and let Bτ = [Bτ

1 , · · · ,Bτ
N ].

In what follows, we introduce the r-weighted index policy
ϕτ (r,M) that operates over the truncated state space. We
shall prove (in Lemma 2) that, under sufficiently large
truncation size, the throughput performance of ϕτ (r,M) is
very close to that of ϕ∗(r,M).

r-weighted Index Policy ϕτ (r,M)

(1). At time slot t, user i is scheduled if the r-weighted
index value W r

i (πi[t]) > ω∗
τ , and stays passive if

W r(πi[t]) < ω∗
τ . If W r(πi[t]) = ω∗

τ , user i is scheduled
with probability ρ∗τ .

(2). The parameters ω∗
τ and ρ∗τ , calculated in the ini-

tialization phase, are such that the long-term average
number of transmissions equals M .

Note that, to implement the policy ϕτ (r,M), the param-
eters ω∗

τ and ρ∗τ need to be calculated at the initialization
phase. We next design the initialization phase based on the
observation that the average number of transmissions de-
creases when either the threshold ω increases or the random-
ization factor ρ decreases [13]. Hence, during initialization,
we first identify the parameter ω∗

τ by increasing the threshold
ω until the constraint (1) is satisfied. Then we select the
randomization factor ρ∗τ so that the constraint (1) is strictly
satisfied with equality. We let the parameter αi(ω, ρ) denote
the expected transmission time to user i under a policy with
threshold ω and randomization factor ρ. The closed form
expression of αi(ω, ρ) is derived as follows,

αi(ω, ρ)

=



ρ(bi0,h−bi0,h+1)+1−pi
11+bi0,h+1

ρbi0,h+(1−ρ)bi0,h+1+(1−pi
11)(h+1−ρ)

if ω=W r
i (b

i
0,h), h<τ ;

ρ(bi0,h−bis)+1−pi
11+bis

ρbi0,τ+(1−ρ)bis+(1−pi
11)(τ+1−ρ)

if ω=W r
i (b

i
0,τ );

ρ(1−pi
11+bis)

(1+τ)(1−pi
11)+ρbis

if ω=W r
i (b

i
s);

0 if ω>W r
i (b

i
s).

(7)

We formally introduce the initialization phase next.

Initialization phase: calculation of ω∗
τ and ρ∗τ

1. Calculate the r-weighted index value W r
i (πi) = ri ·

Wi(πi) for all πi ∈ Bτ
i , i = 1, · · · , N ;

2. Sort the r-weighted index values of each belief states
of all users to a (2τ+1)N -dimensional vector w in in-
creasing order. Let σ(k) be the user index corresponding
to the k-th element wk of vector w.

3. Let k=1 and α̂i = 1, i = 1, · · · , N .

4. Calculate the activation time ασ(k)(wk, 1) of user σ(k)
from (7), and update α̂σ(k) = ασ(k)(wk, 1).

5. If
∑N

i=1 α̂i < M , then ω∗
τ = wk−1; calculate the

randomization factor ρ∗τ from (7) such that
∑

j ̸=σ(k) α̂j+
ασ(k)(ω

∗
τ , ρ

∗
τ ) = M ; output ω∗

τ and ρ∗τ . Otherwise, let
k = k + 1, and go to Step 4.

Remark: The computational complexity of the initialization
phase is dominated by sorting the index values in the second
step, which has complexity O

(
(2τ +1)N · log

(
(2τ +1)N

))
.

After initialization, the r-weighted Index Policy ϕτ (r,M)
takes a very simple form: in each slot, schedule a user
(possibly with randomization) if its r-weighted index value
is above a threshold. Therefore, the per-slot computational
complexity is O(N).

We let the value τ0 be

τ0=4max
{ 1

− log(pi11−pi01)
,

1

log2(pi11−pi01)
, i=1, · · ·, N

}
.

(8)

Let Vτ (r,M) be the weighted sum-throughput under pol-
icy ϕτ (r,M), i.e.,

Vτ (r,M)= lim inf
T→∞

1

T
E
[ T−1∑

t=0

N∑
i=1

ri·πi[t]·aϕτ (r,M)
i [t]

]
. (9)

The next lemma bounds the throughput performance dif-
ference between policies ϕ∗(r,M) and ϕτ (r,M).

Lemma 2. For τ > τ0, the throughput performance differ-
ence between the policy ϕ∗(r,M) and ϕτ (r,M) is upper
bounded as follows,

|V (r,M)− Vτ (r,M)| ≤ f(τ)
N∑
i=1

ri, (10)

where f(τ)=
∑N

i=1 αi

(
Wi(b

i
0,τ ), 1

)
, which satisfies f(τ)→0

as τ→∞.

Proof: We prove this lemma by carefully studying the
relationship between the truncation size τ and the achieved
transmission rate. For details, please refer to [20]. �
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IV. FRAME-BASED QUEUE-WEIGHTED INDEX POLICY

In this section, we propose a throughput-optimal schedul-
ing policy that operates over the truncated state space. The
policy is based on the r-weighted index policy proposed in
the last section and has low-complexity.

A. Throughput Optimal Algorithm

We divide the time slots into separate time frames
of length T , where the k-th frame includes time slots
kT, . . ., (k+1)T−1. The scheduling decisions in the k-th
frame are made based on the queue length information q[kT ]
at the beginning of that frame. During the k-th frame, the
policy ϕτ (q[kT ],M), developed in the last section, is im-
plemented with the queue-weighted index values. Formally,
the T -frame queue-weighted index policy QWIτ (T,M) is
introduced next.

T -Frame Queue-Weighted Index Policy QWIτ (T,M)

The time slots are divided into frames of length T .
Within the k-th frame, the q[kT ]-weighted index policy
ϕτ (q[kT ],M) is implemented for T consecutive slots,
over the truncated state space Bτ .

The next proposition establishes throughput-optimality of
the frame-based queue-weighted index policy.

Proposition 1. For any ϵ > 0, there exist T ′ and τ ′ such that,
if T ≥ T ′ and τ ≥ τ ′, then for any arrival rate λ within
the achievable rate region Γ− ϵ1, under the T -frame queue-
weighted index policy QWIτ (T,M − ϵ/2): (i) all queues
are stable, (ii) the constraint (1) on the average number of
transmissions is satisfied.

Proof: We prove the proposition by first establishing the
uniform convergence of the finite horizon throughput per-
formance in a frame to the infinite horizon throughput. We
then apply Lemma 1 to show that the average Lypunov drift
in each frame is negative, which establishes the throughput-
optimality. Details of the proof are given in Appendix B. �

Remarks: (1) Note that, in Proposition 1, the parameter M
in the queue-weighted index policy is scaled down by ϵ/2.
This mechanism is needed to guarantee the constraint on the
long-term average number of transmission. The details are
given in the proof.
(2) In the queue-weighted index policy, a user is scheduled
based on its queue-weighted Whittle’s index value. This is
especially interesting because of the following: a simple
multiplication of queue length and Whittle’s index value
captures the importance of scheduling a user under two
sophisticated system features – the queue evolution and the
fundamental exploration-exploitation tradeoff.
(3) Calculation of queue-weighted index value is very simple,
which only requires scaling the pre-calculated Whittle’s
index value. Under the queue-weighted index policy, in each
frame, the initialization phase of ϕτ (q[kT ],M−ϵ/2) has

computational complexity O(N logN), while implementing
ϕτ (q[kT ],M−ϵ/2) over the frame has complexity O(TN)
(see the remark in Section III-B). Accordingly, the per-frame
complexity is O(N logN + TN). Therefore, as the frame
length T scales up, the per-slot complexity decreases toward
O
(
N
)
.

(4) The scheduling decisions are made by comparing each
user’s own index value to a threshold, independently with
other users. Hence our policy is also applicable for distributed
implementation in uplink scenarios.

Corollary 1. The achievable rate region Γ, expressed in (3),
is equal to the stability region Λ.

Proof: Recall that the achievable rate region Γ provides an
upper bound to the stability region Λ. Since the previous
proposition states that the queue-weighted index policy sta-
bilizes arrival rates arbitrarily close to the boundary of the
achievable rate region Γ, hence the achievable rate region Γ
and the stability region Λ share the same interior. Because
both regions Γ and Λ are defined over closure of sets, we
have Γ = Λ. �

Proposition 1 requires the state-space truncation size τ
to be large enough for throughput-optimality in the region
Γ − ϵ1. We next characterize the relationship between the
truncation size τ and the size of the corresponding support-
able region, where, recall that, the expression of τ0 is given
in (8).

Proposition 2. (a). If τ≥τ0, there exist T0 and function
g(τ) such that, if T>T0, for all arrival rates within the
stability region Λ−g(τ)1, under the T -frame queue-weighted
index policy QWIτ (T,M−g(τ)/2), all queues are stable,
and constraint (1) on the average number of transmissions
is satisfied.
(b). The function g(τ)=3

∑N
i=1 αi

(
Wi(b

i
0,τ ), 1

)
and satisfies

limτ→∞ g(τ) = 0.

Proof: In the proof, we used Lemma 2 to bound the
throughput performance difference between the truncated
scenario and the non-truncated case. For details, please refer
to Appendix C. �

Remark: Proposition 2 allows one to upper bound the
state-space truncation size τ that ensures the throughput-
optimality in any region Λ−ϵ1, when the frame length T
is sufficiently large. We believe that, by implementing the
policy with expanding frame duration, the dependence on
T0 in Proposition 2 can be removed while preserving the
low-complexity.

V. CONCLUSION

In this work, we have studied downlink scheduling prob-
lem over Markovian evolving ON/OFF fading channels
and imperfect instantaneous channel state information. The
scheduling decisions are made based on the single-bit ARQ-
type feedback and the channel memory inherent in the
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Markovian channels. We propose a throughput-optimal policy
that operates over time frames and appropriately truncated
belief state space. In the proposed policy, the importance of
scheduling a user is measured by a simple multiplication of
the queue length and Whittle’s index value. Based on this
key observation, we develop an index-based policy that is
not only throughput-optimal, but also has low-complexity per
frame in the network size and the truncation level of the
belief state space. Most notably, our policy does not suffer
from the curse of dimensionality that is observed in earlier
works in this context. We further identified a closed form
relationship between the size of the state space truncation
and the achievable throughput region, which is important in
the practical implementation of our low-complexity solution.

REFERENCES

[1] L Tassiulas, A Ephremides, “Stability properties of constrained queueing
systems and scheduling policies for maximum throughput in multihop
radio networks,” IEEE Transactions on Automatic Control, vol. 37, no.
12, pp. 1936-1948, Dec. 1992.

[2] X. Lin, N. B. Shroff, “ Joint rate control and scheduling in multihop
wireless networks,” IEEE CDC, Atlantis, Bahamas, Dec. 2004.

[3] A. Eryilmaz, R. Srikant, “Fair Resource Allocation in Wireless Net-
works using Queue-length based Scheduling and Congestion Control,”
IEEE/ACM Transaction on Networking, vol. 15, no. 6, pp. 1333-1344,
Dec. 2007.

[4] W. Ouyang, S. Murugesan, A. Eryilmaz, N. Shroff, “Exploiting channel
memory for joint estimation and scheduling in downlink networks,”
IEEE INFOCOM, Shanghai, China, Apr. 2011.

[5] C. Li, M. J. Neely, “Exploiting channel memory for multiuser wireless
scheduling without channel measurement: capacity regions and algo-
rithms,” Elsevier Performance Evaluation, vol 68, no. 8, pp. 631-657,
Aug. 2011.

[6] C. Li, M. J. Neely, “ Network utility maximization over partially
observable markovian channels,” IEEE WiOpt, May 2011.

[7] K. Jagannathan, S. Mannor, I. Menache, E. Modiano, “A state action
frequency approach to throughput maximization over uncertain wireless
channels,” IEEE INFOCOM, Shanghai, China, Apr. 2011.

[8] G. Celik, E. Modiano, “Scheduling in networks with time-varying
channels and reconfiguration delay,” IEEE INFOCOM, Orlando, FL,
Mar. 2012.

[9] H. Bogucka, A. Conti, “Degrees of freedom for energy savings in
practical adaptive wireless systems,” IEEE Communications Magazine,
vol. 49, no. 6, pp. 38-45, 2011.

[10] E. Oh, B. Krishnamachari, X. Liu, Z. Niu, “Toward dynamic energy-
efficient operation of cellular network infrastructure,” IEEE Communi-
cations Magazine, vol. 49, no. 6, pp. 56 -61, 2011.

[11] K. Son, H. Kim, Y. Yi, B.Krishnamachari, “Base station operation and
user association mechanisms for energy-delay tradeoffs in green cellular
networks,” IEEE Journal on Selected Areas in Communications, vol. 29,
no. 8, pp. 1525 - 1536, 2011.

[12] P. Whittle, ”Restless bandits: activity allocation in a changing world,”
Journal of Applied Probability, vol. 25, pp. 287-298, 1988.

[13] W. Ouyang, A. Erilmaz, N. B. Shroff, “Asymptotically optimal down-
link scheduling over markovian fading channels,” IEEE INFOCOM
2012, Orlando, Frorida (ArXiv Preprint: 1108.3768).

[14] E. J. Sondik, “The optimal control of partially observable Markov
Decision Processes,” PhD thesis, Stanford University, 1971.

[15] J. D. Isom, S. Meyn, R. D. Braatz, “Piecewise linear dynamic pro-
gramming for constrained POMDPs,” National Conference on Artificial
Intelligence, pp. 291-296, 2008.

[16] L. Tassiulas, A. Ephremides,“Dynamic server allocation to parallel
queues with randomly varying connectivity,” IEEE Transactions on
Information Theory, vol. 39, pp. 466-478, 1993.

[17] K. Liu, Q. Zhao, “Indexability of restless bandit problems and op-
timality of whittle’s index for dynamic multichannel access,” IEEE
Transactions on Information Theory, vol. 56, pp. 5547-5567, 2008.

[18] L. Georgiadis, M. Neely, L. Tassiulas, “Resource allocation and cross-
Layer control in wireless networks,” NOW Publishers Inc., 2006

[19] S. Meyn, “Control Techniques for Complex Networks,” Cambridge
University Press, 2007.

[20] W. Ouyang, A. Eryilmaz, N. B. Shroff, “Low-complexity optimal
scheduling over correlated fading channels with ARQ feedback,” Tech-
nical Report, (www.ece.osu.edu/∼ouyangw/wiopt12.pdf).

APPENDIX A
PROOF OF LEMMA 1

The proof of the lemma is an extension of the proof of
Proposition 1 in [13]. Consider the problem Ψ(r,M) with
weight vector r. The constraint (1) can be written in an
equivalent form that requires at least N − M channels to
be passive on average, i.e.,

lim inf
T→∞

1

T
E
[T−1∑
t=0

N∑
i=1

(1−aϕi [t])
]
≥ N −M. (11)

Associating a Lagrange multiplier ω to the constraint
(11), we have the following Lagrangian function L(ϕ, ω) for
problem Ψ(r,M),

L(ϕ, ω)= lim inf
T→∞

1

T
E
[ T−1∑

t=0

N∑
i=1

ri·πi[t]·aϕi [t]
]

+ω· lim inf
T→∞

1

T
E
[ T−1∑

t=0

N∑
i=1

(1−aϕi [t])
]
−ω·(N−M). (12)

The dual function D(ω) is defined as D(ω) =
maxϕ∈Φ L(ϕ, ω). Following the lines of proof in [13] we
have

D(ω) =
N∑
i=1

Uri
i (ω) + ω(N −M).

in which Uri
i (ω) is a ω-subsidy problem under weight ri,

Uri
i (ω) = max

ϕ∈Φi

lim sup
T→∞

1

T
E
[ T−1∑

t=0

[
ri·πi[t]·aϕi [t]

+ ω · (1−aϕi [t])
]]
, (13)

where Φi denotes the set of scheduling policies that activate
and idle the user i according to the observed channel history.
In the above problem (13), for each channel i at belief state
πi, it will receive a reward riπi when it activates, otherwise
it will receive a subsidy ω for passivity. We let Iri

i (ω) ⊆ Bi

be the set of belief states for which it is optimal to stay idle.
Under the unit weight ri = 1, it was shown in [17] that

the problem is Whittle indexable, i.e., I1
i (ω) monotonically

increases from ∅ to Bi as ω increase from 0 to ∞ for each
user i. The Whittle’s index value Wi(π) is defined as the
infimum subsidy value for which the belief state π is at the
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boundary of I1
i (ω), i.e.,

Wi(π) = inf{ω : π ∈ I1
i (ω)}.

It follows from [13] that, for the ω-subsidy problem under
unit weight ri = 1, the optimal policy is to activate the user
at time slot t if Wi(π) > ω, and to stay idle if Wi(π) < ω,
with tie breaking arbitrarily if Wi(π) = ω.

We next extend the optimal algorithm for the ω-subsidy
problem under unit weight to the general case with arbitrary
weight ri. An equivalent form of Uri

i (ω) is as follows,

Uri
i (ω)

=ri max
ϕ∈Φi

lim sup
T→∞

1

T
E
[ T−1∑

t=0

[
πi[t]a

ϕ
i [t]+

ω

ri
(1−aϕi [t])

]]
. (14)

Therefore, the optimal solution for the ω-subsidy problem
(13) with weight ri takes the same form as the optimal
solution for the ω/ri-subsidy problem with weight 1. Accord-
ingly, the optimal solution takes the following form: a user
i is scheduled at slot t if Wi(πi[t]) > ω/ri, and stay idle if
Wi(π) < ω/ri, with tie breaking arbitrarily if Wi(π) = ω/ri.

We define the r-weighted index value as W r
i (π) = ri ·

Wi(π), π ∈ Bi, i ∈ {1, · · · , N}. The optimal policy for the
reward maximization problem in (14) is then to activate the
user i at time slot t if W r

i (π) > ω, and to stay idle if
W r

i (π) < ω, with tie breaking arbitrarily if W r
i (π) = ω.

Therefore the dual function value D(ω) can be achieved by
a threshold-based policy implemented over the r-weighted
index values W r

i (π). We shall denote the policy as ϕ(ω, ρ)
where each user i at the threshold W r

i (π) = ω is activated
with probability ρ.

Following the similar proof techniques of Lemma 11 in
[13], by appropriately choosing the threshold ω∗ and the
corresponding randomization parameter ρ∗ (for which each
user at the index value ω∗ activates with probability ρ∗) such
that the constraint (1) on the average number of transmissions
is strictly satisfied with equality, the corresponding policy is
optimal for the problem Ψ(r,M). Denoting such a policy as
ϕ∗(r,M), the proposition is proven.

APPENDIX B
PROOF OF PROPOSITION 1

Define Lyapunov function L(q) = 1
2

∑N
i=1 q

2
i . We con-

sider the T -frame average Lyapunov drift ∆L(q[kT ]) over
the k-th frame, expressed as,

∆L(q[kT ])/T

=
1

T
E
[
L(q[(k + 1)T ])− L(q[kT ])

∣∣q[kT ],π[kT ]]
≤BT +

N∑
i=1

qi[kT ] · λi −
N∑
i=1

qi[kT ] ·
1

T

· E
[ T−1∑

t=0

πi[kT+t]·aϕτ (q[kT ],M−ϵ/2)
i [kT+t]

∣∣∣π[kT ]], (15)

where B is a constant whose value is determined by the
second moment of the arrival process [18]. Because λ lies
within the stability region Γ − ϵ1, we have λ + ϵ1 ∈ Γ.
Therefore, for any vector q,

N∑
i=1

qi · (λi + ϵ) ≤ V (q,M)

where V (q,M) is defined in (4)-(5). The Lyapunov drift (15)
now becomes,

∆L(q[kT ])/T ≤BT−ϵ
N∑
i=1

qi[kT ]+

V (q[kT ],M)−V T
τ (q[kT ],M−ϵ/2), (16)

where V T
τ (q[kT ],M) is the T -horizon expected transmission

rate achieved under the policy ϕτ (q[kT ],M), i.e.,

V T
τ (q[kT ],M)

=
N∑
i=1

qi[kT ]
1

T
E
[T−1∑
t=0

πi[kT+t]·aϕτ (q[kT ],M)
i [kT+t]

∣∣∣π[kT ]].
We denote ZT

τ (q,M) as the finite T -horizon expected
number of transmissions, under the policy ϕτ (q[kT ],M),
i.e.,

ZT
τ (q,M) =

N∑
i=1

1

T
E
[ T−1∑

t=0

a
ϕτ (q,M)
i [t]

]
.

The next lemma states that, as the length of the time
horizon tends to infinity, the expected achieved rate in
finite horizon asymptotically converges to infinite horizon
achievable rate, and the expected number of transmissions
converges to the value M .

Lemma 3. For any M and κ > 0, we have, uniformly over
q, M , and the initial state π[kT ],
(a) there exists positive constants c1 and c2 such that∣∣∣Vτ (q,M)− V T

τ (q,M)
∣∣∣ < (

κ+ c1 exp(−c2T )
) N∑
i=1

qi.

(b) there exists positive constants d1 and d2 such that∣∣∣ZT
τ (q,M)−M

∣∣∣ < (
κ+ d1 exp(−d2T )

)
.

Proof: The proof of this lemma is based on the observation
that the belief state of each user evolves as a finite state space,
aperiodic Markov Chain within one communicating class. By
bounding the mixing time of the belief state evolution, we
can obtain the exponential decay rate as in the lemma. Details
of the proof are moved to our technical report [20]. �

The next lemma bounds the difference between the reward
function Vτ (q,M − ϵ) and Vτ (q,M).

Lemma 4. When τ>τ0, the difference between the ex-
pected transmission rate achieved under policy ϕτ (q,M)
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and ϕτ (q,M − ϵ) satisfies the following bound,

∣∣Vτ (q,M)− Vτ (q,M − ϵ)
∣∣ ≤ ϵ

N∑
i=1

qi.

Proof: We use νi(ω, ρ) to denote the expected throughput
contributed by user i under a policy with threshold ω
and randomization factor ρ. The closed form expression of
νi(ω, ρ) can be found in [20]. We proceed with the following
lemma.

Lemma 5. For a user i, if τ ≥ τ0, we have
(a) fixing ω, both αi(ω, ρ) and νi(ω, ρ) increase with ρ;
(b) for any two parameter pairs (ω1, ρ1) and (ω2, ρ2),∣∣∣ νi(ω1, ρ1)− νi(ω2, ρ2)

∣∣∣ ≤ qi ·
∣∣∣ αi(ω1, ρ1)− αi(ω2, ρ2)

∣∣∣.
Proof: The lemma is proven via studying the closed form
relationship between αi(ω, ρ) and νi(ω, ρ). Details of the
proof are available in [20]. �

Suppose, under the weight q, the policies ϕτ (q,M) and
ϕτ (q,M − ϵ) correspond to parameter pairs (ωτ

M , ρτM ) and
(ωτ

M−ϵ, ρ
τ
M−ϵ), respectively.

For user i, we let yi(ϵ) denote be the difference between
activation time under policy ϕτ (q,M−ϵ) and ϕτ (q,M), i.e.,
yi(ϵ) = αi(ω

τ
M , ρτM )−αi(ω

τ
M−ϵ, ρ

τ
M−ϵ). From Lemma 5(a),

we have yi(ϵ) ≥ 0,∀i. Since the difference of the total
expected number of transmissions between the two policies
is ϵ, we have

∑N
i=1 yi(ϵ) = ϵ. From Lemma 5(b), we have,∣∣Vτ (q,M)− Vτ (q,M−ϵ)

∣∣
≤

N∑
i=1

∣∣∣νi(ωτ
M , ρτM )− νi(ω

τ
M−ϵ, ρ

τ
M−ϵ)

∣∣∣
≤

N∑
i=1

qi ·
∣∣∣αi(ω

τ
M , ρτM )− αi(ω

τ
M−ϵ, ρ

τ
M−ϵ)

∣∣∣
=

N∑
i=1

qi · yi(ϵ)

≤
N∑
i=1

qi

N∑
i=1

yi(ϵ)

=ϵ

N∑
i=1

qi.

We hence have proved Lemma 4. �
From Lemma 2-4, the Lyapunov drift (16) can be further

bounded as follows,

∆L(q[kT ])/T

≤BT−ϵ
N∑
i=1

qi[kT ]+V (q[kT ],M)−Vτ (q[kT ],M)

+ Vτ (q[kT ],M)−Vτ (q[kT ],M−ϵ/2)

+ Vτ (q[kT ],M−ϵ/2)−V T
τ (q[kT ],M−ϵ/2)

≤BT+
[
−ϵ+f(τ)+ϵ/2 +

(
κ+ c1 exp(−c2T )

)]
·

N∑
i=1

qi[kT ]

=BT+
[
−ϵ/2+f(τ)+

(
κ+c1 exp(−c2T )

)] N∑
i=1

qi[kT ].

(17)

Since f(τ) =
∑N

i=1 αi(b
i
0,τ , 1) can get arbitrarily small

as τ becomes large, and c1 exp(−c2T ) approaches zero as
T scales, and also noting that κ can be arbitrarily small,
the Lyapunov drift becomes negative as both τ > τ ′ > τ0,
and T is large enough, e.g., T > T1. From Foster-Lyapunov
stability criterion [19], all the queues in the system are hence
stable.

Note that, under the queue weighted policy
QWIτ (T,M − ϵ/2), the expected number of transmissions
in the k-th frame, ZT

τ (q[kT ],M − ϵ/2), is bounded by
Lemma 3 as,∣∣∣ZT

τ (q[kT ],M − ϵ/2)− (M − ϵ/2)
∣∣∣ < (

κ+ d1 exp(−d2T )
)
.

Therefore, there exists T2 such that ZT
τ (q[kT ],M−ϵ/2) <

M regardless of q[kT ] and π[kT ]. Therefore, the long term
constraint on the average number of transmissions is satisfied.
Letting T ′ = max{T1, T2}, the proposition is established.

APPENDIX C
PROOF OF PROPOSITION 2

The proof of the proposition 2 follows the similar lines of
the proof for proposition 2. For all arrival rates within the
stability region Λ−g(τ)1, under the T -frame queue-weighted
index policy QWIτ (T,M−g(τ)/2) with τ ≥ τ0, we have
the following upper bound on the average Lyapunov drift
over the k-th frame similar to (17),

∆L(q[kT ])/T

≤BT +
[
− g(τ)/2 + f(τ) +

[
κ+c1 exp(−c2T )

]] N∑
i=1

qi[kT ]

=BT +
[
− f(τ)/2 +

[
κ+ c1 exp(−c2T )

]] N∑
i=1

qi[kT ],

where the last equality holds because g(τ) = 3f(τ). For
fixed τ , by choosing κ sufficiently small and T sufficiently
large, the Lyapunov drift is negative. Therefore, the queues
are stable according to the Foster-Lyapunov criterion. Also
similar to the proof of proposition 2, the long-term constraint
on the average number of transmissions is satisfied for
sufficiently large T . Letting T0 be the value of frame length
that guarantees the negative Lyapunov drift and also satisfies
the constraint, part (a) of the proposition will hold.

Note that we have g(τ) = 3f(τ). From Lemma 2, we have
limτ→∞ g(τ) = 0. Therefore, part (b) of the proposition also
holds.


