Supplementary Material

Proof of Lemma 4 for Class IV Trees

Lemma 4. If we have \(x \prec y \), then for all \(j \in V \), we also have \(x + e_j \prec y + e_j \).

Proof: Let \(u = x + e_j \), and \(z = y + e_j \). Since \(x \prec y \), \(s(y) - s(x) = k \geq 0 \). Thus, \(s(z) - s(u) = k \).

We need to show that \(\forall i = 1, 2, \ldots, s(x) + 1 \)

\[
t^u_i \leq t^z_i + K \tag{1}
\]

We now consider the following cases. Recall that policy \(\pi_{IV} \) schedules the network with the new arrival as well.

Case 1: Packet in state \(u \) will reach the sink before the newly arrived packet, and packet \(i+k \) in state \(z \) will also reach the sink before the newly arrived packet. Further, neither \(i \) nor \(i+k \) is the newly arrived packet (see Figure 1(a)).

In this case, \(t^u_i = t^z_i + d^u \) and \(t^u_{i+k} = t^z_{i+k} \). Therefore, for all such packets, (1) holds.

Case 2: Packet in state \(u \) is either the newly arrived packet or will reach the sink only after the newly arrived packet reaches, and packet \(i+k \) in state \(z \) will reach the sink before the newly arrived packet and is not the newly arrived packet (see Figure 1(b)).

In this case, the \(i \)th packet in state \(x \) becomes the \((i+1) \)th packet in state \(u \). We show that \(t^u_i \leq t^x_i \) as follows. It is easy to see that \(d^u_i \leq d^x_i \). Therefore, by Lemma 2, \(t^u_i \leq t^x_i \) if and only if \(t^u_{i-1} \leq t^x_{i-1} \). Iteratively substitute \(i \) by \(i-1 \) until packet \(i \) is a packet that will reach the sink before the newly arrived packet. For this packet, from Case 1, we know that \(t^u_i = t^z_i \). Hence, it follows that \(t^u_i \leq t^z_i \) for all packets \(i \) that satisfy the condition in Case 2.

For packets in state \(z \), the situation is the same as in Case 1. Therefore, it follows that \(t^u_i \leq t^z_i \leq t^z_{i+k} = t^z_{i+k} \).

Case 3: Packet in state \(u \) is either the newly arrived packet or will reach the sink before the newly arrived packet reaches, and packet \(i+k \) in state \(z \) is either the newly arrived packet or will reach the sink after the newly arrived packet reaches (Figure 2).

We prove (1) by contradiction. Suppose that for some \(i \), \(t^u_i > t^z_{i+k} \).

Suppose that the newly arrived packet is in one of the first \(K \) nodes in the equivalent linear network, say, at node \(d \leq K \) (Figure 2(a)). Then \(t^u_i = t^z_{i-1} + d^u_i \), and \(t^z_{i+k} \geq t^z_{i+k-1} + d \). Hence, \(t^u_i > t^z_{i+k} \) implies that \(t^z_{i-1} > t^z_{i+k-1} + d - d^u_i = t^z_{i+k} \). By iteratively substituting \(i \) by \(i-1 \), we either obtain \(i = 1 \) in state \(u \) or \(i+k \) is a packet that reaches the sink before the newly arrived packet according to state \(z \). If \(i = 1 \), \(t^u_i = t^z_0 = d \leq t^z_{i+k} \), and thus we get a contradiction. If \(i+k \) is a packet that reaches the sink before the newly arrived packet, then from Case 1, we get a contradiction. Hence, (1) must hold.

Suppose that the newly arrived packet arrives at a node \(> K \) in the equivalent linear network, say, at node \(d > K \) (Figure 2(b)). Suppose that for some \(i \), \(t^u_i > t^z_{i+k} \). If \(i \) is a packet that lies in one of the first \(K \) nodes in state \(u \), using the same argument as above, we get a contradiction. Otherwise, if \(t^u_i = t^z_0 \leq d \), since \(t^z_{i+k} \geq d \), we get a contradiction. If \(t^u_i = t^z_{i-1} + K + 1 > t^z_{i+k} \), this implies that \(t^z_{i-1} > t^z_{i+k-1} + K + 1 \). Hence, iteratively substituting \(i \) by \(i-1 \), and arguing as above, we again get a contradiction.

Hence, (1) holds for this case.

Case 4: Packet in state \(u \) reaches the sink after the newly arrived packet, and packet \(i+k \) in state \(z \) is either the newly arrived packet or reaches the sink after the newly arrived packet.

Suppose that the new packet is the \(n^{th} \) packet to leave the system according to state \(u \), and the \(n^{th} \) packet to leave the system according to state \(z \).

Since \(i > m \), we have \(a^u_i = a^z_{i-1} \). Similarly, when \(i+k > n \) and packet \(i+k \) in state \(z \) is either the newly arrived packet or will reach the sink after the newly arrived packet reaches (Figure 2).
we have \(t_{i+k}^z = t_{i+k-1}^z - 1 \).

We first show that \(t_{i+k}^z \geq t_{i+k-1}^z \) when \(i + k \geq n \).

For the base case, consider \(i + k = n \): Since \(t_{n}^z = t_{n-1}^z = t_{n-1} \), we have \(t_{n}^z \geq t_{n-1}^z \). Thus the result holds for \(i + k = n \).

Assume that the result holds for \(i + k = l > n \).

Consider \(i + k = l + 1 \): If \(t_{i+k}^z = \max(t_{i+1}^z + K + 1, d_{i+k}) \), then \(t_{i+l+1}^z \geq \max(t_{i+l}^z + K + 1, t_{i+l}^z) = t_{i+l}^z \), since \(d_{i+l+1} = d_{i+l} \) and \(t_{i+l}^z \geq t_{i+l}^z \). On the other hand, if \(t_{i+l}^z = t_{i+l}^z + d_{i+l+1} \), it follows that \(t_{i+l}^z = t_{i+l}^z + d_{i+l} \geq t_{i+l}^z + d_{i+l} = t_{i+l}^z \). Thus the result holds for \(l + 1 \).

Therefore, by induction, \(t_{i+k}^z \geq t_{i+k-1}^z \forall i + k \geq n \).

We now distinguish the cases where the newly arrived packet is located in the equivalent linear network.

Suppose that the newly arrived packet arrived in a node \(d \) in the equivalent linear network such that \(d \leq K \) (Figure 3).

We have the following cases.

- **Packet \(i \) in state \(u \) lies in a node between \(d \) and \(K + 1 \), and \(i + k \) in \(z \) also lies in a node between \(d \) and \(K + 1 \) in the equivalent linear network (Figure 3(a)): In this case, the arrival of the new packet increases the time for \(i \) and \(i + k \) to reach the sink by \(d \) slots. Therefore, \(t_{i+k}^u = t_{i+k}^u + d \) and \(t_{i+k}^z = t_{i+k-1}^z + d \). Since \(x < y \), (1) holds.

- **Packet \(i \) in state \(u \) lies in a node greater than \(K + 1 \), and \(i + k \) in \(z \) lies in a node between \(d \) and \(K + 1 \) in the equivalent linear network (Figure 3(b)): In this case, \(t_{i+k}^u \leq t_{i+k}^u + d \) and the situation is the same as in the previous case for packet \(i + k \). Hence, (1) holds.

- **Packet \(i \) in state \(u \) lies in a node between \(d \) and \(K + 1 \), and \(i + k \) in \(z \) lies in a node greater than \(K + 1 \) in the equivalent linear network (Figure 3(c)): In this case, we have \(t_{i+k}^u = t_{i+k}^u + d \) where \(d_{i+k}^u \leq K + 1 \) and \(d_{i+k}^z \geq t_{i+k}^z + K + 1 \). Hence, \(t_{i+k}^u > t_{i+k}^z \). Iteratively substituting \(i \) by \(i - 1 \), we either reach the newly arrived packet in state \(u \) or we reach a packet \(i + k \) in state \(z \) that lies in a node between \(d \) and \(K + 1 \) in the equivalent linear network. In the former case, by Case 3, we get a contradiction. For the latter case, we get a contradiction because of the previous case in this list. Hence, (1) holds.

- **Packet \(i \) in state \(u \) lies in a node greater than \(K + 1 \), and \(i + k \) in \(z \) also lies in a node greater than \(K + 1 \) in the equivalent linear network (Figure 3(d)): We can again prove (1) by contradiction. Suppose that \(t_{i+k}^u > t_{i+k}^z \) for some \(i \). We cannot have \(t_{i+k}^u = t_{i+k}^z \) since in that case \(d_{i+k}^u = d_{i+k}^z \), which contradicts \(x < y \). Hence, \(t_{i+k}^u = t_{i+k}^z + 1 \). Iteratively substituting \(i \) by \(i - 1 \), we either reach a situation where packet \(i \) is the newly arrived packet, or packet \(i + k \) is a packet that lies in a node \(b \leq K + 1 \). In either case, we obtain a contradiction since it falls under the previously listed scenarios. Hence, (1) holds.

Now, suppose that the newly arrived packet arrived in a node \(d \) in the equivalent linear network such that \(d \geq K \). We can again prove (1) by contradiction. Suppose that \(t_{i+k}^u > t_{i+k}^z \) for some \(i \). Since both \(i \) and \(i + k \) now lie in nodes \(d \geq K \), by a similar argument as in the last possibility above, we must have \(t_{i+k}^u = t_{i+k}^u + K + 1 > t_{i+k}^z + K + 1 \). Hence, \(t_{i+k}^u > t_{i+k}^z \). Again, by iteratively substituting \(i \) by \(i - 1 \), we either reach a situation where packet \(i \) is the newly arrived packet, or packet \(i + k \) is a packet that reaches the sink before the newly arrived packet. In the former case, we get a contradiction from Case 3, and in the latter case, we get a contradiction from Case 2. Thus, (1) holds in this case.

From these four cases, the result holds.