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Abstract— This paper introduces the vector sparse ma- B
trix transform ( vector SM7J, a new decorrelating transform
suitable for performing distributed processing of high dimen-
sional signals in sensor networks. We assume that each sensor |
in the network encodes its measurements into vector outputs .
instead of scalar ones. The proposed transform decorrelates /g #age
a sequence of pairs of vector outputs, until these vectors are
decorrelated. In our experiments, we simulate distributed
anomaly detection by a network of cameras monitoring
a spatial region. Each camera records an image of the g
monitored environment from its particular viewpoint and
outputs a vector encoding the image. Our results, with both 1
arti cial and real data, show that the proposed vector SMT Mo
transform effectively decorrelates image measurements from ~&
the multiple cameras in the network while maintaining low
overall communication energy consumption. Since it enables
jomt- proce_ssing of the mU|tip|e vector outputs, our methOd Fig. 1: A camera network where each camera captures an image of the environment
prowdes signi cant improvements '[Q anomaly detectlor) ac-  from one viewpoint and encodes the image into a vector output. The ageplegat
curacy when compared to the baseline case when the imagesSoutputs from all cameras form the high-dimensional vectorCameras and |
are processed independently. have overlapping views. Since outputs from cameras with overlapping viavas t

to be correlated, so does the aggregated vector
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Index Terms—Sparse Matrix Transform, Wireless Sensor
Networks, Smart Camera Networks, Distributed Signal Pro-
cessing, Distributed Anomaly Detection, Multi View Image Event detection and more speci cally anomaly detection
Processing, Pattern Recognition are important applications for many sensor netwofks [5].
| INTRODUCTION In general, the vector outputs from all sensors in a network
o ) can be concatenated to form a singldimensional vector
_In_recent years, there has been signi cant interest i and then the goal of anomaly detection is to determine if
distributed monitoring using sensdrl [11.][2], and camerg corresponds to a typical or anomalous event. [Big. 1 illus-
networks [[3], [4]. Consider the scenario where all camerggtes this scenario for a network of cameras. The vector
collectively monitor the same environment. Each camegytputs from different cameras in the network are likely
registers an image of the environment from its speci ¢ be correlated, particularly when the cameras capture
viewpoint and encodes it into a vector output. As thgyerlapping portions of the scene; so for best detection
number of deployed cameras grows, so does the combingguracy, vectox should be decorrelated as part of the
data generated from all cameras. Since these camegagection process.
usually operate under limited battery power and narrow one possible approach to decorrelatds to have all
communication bandW|dth,th|S data deluge created in |arggmeras Send their vector outputs to a sink node_ Th|S
networks imposes serious challenges to the way datagi§proach has several problems because it puts a dispro-
communicated and processed. portional and unscalable burden on the sink and on the
- communication links leading to it. One possible solution
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racy. keeping low the communication required for distributed
Because of the limitations above, there is a need fdecorrelation.
distributed algorithms which can decorrelate vector camer The rest of this paper is organized as follows. $ec. Il
outputs without using a sink, while keeping the communteviews the relevant related work. Sé&cl Il describes the
cation among sensors low. main concepts of the scalar SMT. SEC] IV introduces the
In this paper, we propose the vector sparse matmector SMT algorithm, designed to perform distributed
transform (vector SMT)[[8], a novel algorithm suited fordecorrelation of vector sensor outputs in a sensor network.
distributed signal decorrelation in sensor networks whe8ec.[W shows how to use the vector SMT to enable
each sensor outputs a vector. It generalizes the conceptisftributed detection in a sensor network. 9ed. VI shows
the scalar sparse matrix transform if [9] to decorrelaticexperimental results of detection using data from multi-
of vectors. This novel algorithm operates on pairs afamera views of objects as well as simulated data. Finally,
sensor outputs. In particular, the vector SMT decorredatinhe main conclusions and future work are discussed in
transform is de ned as an orthonormal transformation corgec.[VII.
strained to be formed by a product of pairwise transforms
between pairs of vectors, and it is designed using a greed
optimization of the likelihood function ok. Once tf?is y Il RELATED WORK
transform is designed, the associated pairwise transformsSeveral methods to compute distributed Karhuneévieo
are applied to sensor outputs distributed over the netwotkansform (KLT) and principal components analysis (PCA)
without the need of a powerful sink node. By constrainingy sensor networks have been proposed. The distributed
the total number of pairwise transforms to be small, ol®CA algorithms in [[1B] [[I4] operate on scalar sensor
method imposes a sparsity constraint to the data. Whentputs, and constrain communication by assuming con-
this sparsity constraint holds for the data being processelitional independence of a sensor output given its neigh-
the vector SMT can substantially improve the accuracy bbring sensor outputs. A distributed KLT algorithm in][15],
the resulting decorrelating transform even when a limitdd6], [17], [18] compresses/encodes vector sensor outputs
number of training samples is available. for an aggregated reconstruction at the sink with minimal
Distributed decorrelation with limited communicationmean-square error. Distributed decorrelation using vedvel
is an important characteristic of our method. In multiransforms with lifting has been studied for sensor network
view camera networks, camera pairs that are far apavith several topologies: linear [19], two-dimensional][20
can generate highly correlated outputs][10]. Our metha@ud tree[[21l]. While assuming speci c network topologies
models inherent energy constraints in the sensor netwakd correlation models for scalar sensor outputs, these
by imposing that the total communication required fomethods focus mainly on efcient data gathering and
distributed correlation remains under a specic budgetouting. None of these methods takes into consideration
As a result, during the design of the decorrelating tranthat sensors located multiple hops apart can generateyhighl
formation, our method selects sensor pairs based on tlwrelated outputs, as in the case of two cameras pointing
correlation between their outputs while penalizing thesonéo the same event, as argued [inl[10].
that are several hops apart. Distributed detection have been studied since the early
We introduce the concept of a correlation score, E980s [22]. Most approaches rely on encoding scalar sen-
generalization of the concept of correlation coef cient tsor outputs for ef cient transmission over low bandwidth
measure correlation between pairs of random vectors. \lifgks to a sink that makes nal detection decisions. More
use this score to select pairs of most correlated sensecently, detection of volume anomalies in networks have
outputs during the design of the vector SMT decorrelabeen studied in[[23],[[24]/[]25]. These approaches focus
ing transform. This correlation score is closely related ton scalar measurements in network links and rely on
the concepts of mutual information between two randogentralized data processing. Several methods for video
vectors [11], and their total correlationh [12]. anomaly detection have been proposed (see [26] for a
To validate our method, we describe experiments usisgrvey). The method in_[25] uses multi view images of
simulated data, as well as both arti cial and real multi vieva highway system to detect traf c anomalies, with each
image data. We use the vector SMT to decorrelate the multew monitoring a different road segment or intersection.
view data in a simulated camera network for the purpodéne processing of the multiple views is non-distributed and
of anomaly detection. We compare our method agairtbie method does not model any correlations between views.
centralized and independent approaches for processing\ccurate anomaly detection requires decorrelation of
camera outputs. The centralized approach relies on a sthke background signal_[27]. In order to decorrelate the
node to decorrelate all outputs and requires large amouhtckground, we need an accurate estimate of its covariance
of communication. The independent approach relies omatrix. Several methods to estimate covariances of high-
each camera computing the partial likelihood of its outpulimensional signals have been proposed recently [28], [29]
independently and communicating the resulting value to tf&0], [31], [9], [32]. Among these methods, the sparse
sink that makes the nal detection decision. While minimatrix transform (SMT)[[B], here referred to as the scalar
mizing communication, this independent approach leads$MT, has been shown to be effective, providing full-rank
poor detection accuracy since it does not take into accowuvariance estimates of signals even when the number
correlations between camera outputs. Our results show tbétraining samples is much smaller than the dimengion
the vector SMT decorrelation enables consistently moof a data sample. Furthermore, the associated decoriglatin
accurate anomaly detection across the experiments whilansform consists of a product @f(p) Givens rotations,



and therefore, it is computationally inexpensive to applft “E! = S. However,S is a poor estimate oR when

The scalar SMT has been used in detection and classi aa-< p. As shown in [[9], the greedy optimization dfl (4)

tion of high-dimensional signals [B3], [34[, [B5] and Giwen under the constraint that the allowed transforms are in the

rotations have been used in ICA[36]. Since it involveform of (1) yields accurate estimates even wimen p.

only operations between coordinate pairs, it is well-glite The constraint in[{1) is non-convex with no obvious

to distributed decorrelation of scalar sensor outputs.[37]closed form solution. In]9], we use a greedy optimization
approach in which we select each Givens rotatign,

L b di ional d f Imodel order parametd can be estimated using cross-
et x be ap-dimensional random vector from a muljigation over the training sef [38][ [39] or using the

tivariate, Gaussian distributiorl\ (O; R). Moreover, the inimum descrioti
. ! Ml t ption length (MDL)[35].
covariance matrixR can be decomposed in®=E E, " qypjcally, the average number of rotations per coordi-

where is a diagonal matrix an€ is orthonormal. The | ,:5'k=pis small € 5). so that the computation to appl
Sparse Matrix Transform (SMT)[9] models the orthonorg,, SM'IP to a vectgr gf data is very Iowl? i.8(K=p) + fpy

mal matrixE as the product oK sparse matrice&x , SO yating-point operations per coordinate. Finally, when

that ¥ K = g , the SMT factorization oR is equal to its exact

E = E.= E, Ex : 1) diagonalization, a process known as Givens QR.
k=1

In (1), each sparse matrik,, known as a Givens rota-
tion, is a planar rotation over a coordinate péik;jk)

IV. DISTRIBUTED DECORRELATION WITH THEVECTOR
SPARSEMATRIX TRANSFORM

parametrized by an anglg, i.e, Our goal is to decorrelate the-dimensional vectox
Ex=1+( iijk; &) ; ) aggregated from outputs of all sensors, where each of the
where g Y ’ L sensors outputs am-dimensional sub-vector of. The

o i P vector SMT operates or by decorrelating a sequence of
2 Cos(i) Lifi=j =i ori=j=j pairs of its sub-vectors. This vector SMT generalizes the

(g = Sms(ink() ) :]]: : z J!k 2?1(3]] z Jik : (3) concept of the scalar SMT in Sdcllll to the decorrelation
: I othenice k of pairs of vectors instead of pairs of coordinates.

This SMT model assumes thit Givens rotations in[{1)
are suf cient to decorrelate the vectar Each matrix,Ex ~ A. The Vector SMT Model

operates on a single coordinate paingfplaying a role - o thep dimensional vectox be partitioned intd. sub-
analogous to the decorrelating “butter y” in the fast Fauri

Transform (FFT). Since both the ordering of coordinat\éeCtors’ 2x(1) 3
pairs (ix;jk), and the values of rotation angles are —_—
unconstrained, the SMT can model a much larger class of X = 9 : g ;
signal covariances than the FFT. In fact, the scalar SMT is a (@)

generalization of both the FFT and the orthonormal wavelet

transform. Figs[J2(b) and (c) make a visual comparisqhhere each sub-vectox(® is an h-dimensional vector
of the FFT and the Scalar SMT. The SMT rotations Ca.@utput from a sensar= 1, ,L in a sensor network. A

operate on pairs of coordinates in any order, while ijector SMT is an orthonormal  p transform, T, written
the FFT, the butter ies are constrained to a well-de ne(&s the product oM OrthonormaL sparse matriceS,
sequence with speci ¢ rotation angles. ¥

The scalar SMT design consists in learning the product T= T - (6)
in (@) from a set ofn independent and identically dis- mo
tributed training vectorsX =[x1;  ;Xn], fromN (0; R).

m=1
where each pairwise transforrii,, 2 RP P, is a block-

Assuming thatR = E E', the maximum likelihood " ; .
estimates of and are given by wise sparse, orthonormal matrix that operates exclusively
. . . ¢ on the 2h-dimensional subspace of the sub-vector pair
—arg min diag(E"SE) (4)  x(m) x(n) as illustrated in Figl2(a). The decorrelating
A diag( I:A‘SI‘:“) . (5) transform is then formed by the product of tife pairwise

] transforms, wheré is a model order parameter.
whereS = iXX' and g is the set of allowed or- EachT,, is a generalization of a Givens rotation @ (2)
thonormal transforms. The functiomag() andj j are to a transform that operates on pairs of sub-vectors instead
the diagonal and determinant, respectively, of a matrix asf coordinates. Similarly, the vector SMT il (6) generadize
gument. With the SMT model assumption, the orthonorméle concept of the scalar SMT in SEc] llI: it decorrelates a
transforms in ¢ are in the form of [(l1), and the total high-dimensional vector by decorrelating its pairs of sub-
number of planar rotation¥, is the model order parameter.vectors instead of pairs of coordinates. Figs. 2(b) and (d)
When performing an unconstrained minimization [df (4¢ompare the vector and the scalar SMTs approaches graph-
by allowing the set x to contain all orthonormal trans-ically. In the scalar SMT, each Givens rotatiBp plays the
forms, whenn > p, the minimizef= is the orthonor- role of a “decorrelating butter y” (Fig[I2(b)) that togethe
mal matrix that diagonalizes the sample covariance, i.elecorrelatex. In the vector SMT, each orthonormal matrix



Tm corresponds to series of decorrelating butter ies thatith the sub-vector paifim ;jm). Their associate@h 2h
operate exclusively on coordinates of a single pair of subample covariance, is ther}#given by

vectors ofx. Finally, the sequence if](6), illustrated in 1 (im) h i
Fig. [2(d), decorrelate® pairs of sub-vectors ok, until Slimim) = = Xm X m)tjx (im)t (14)
the decorrelated vecta is obtained. m n xim) m m

In a sensor network, we compute the distributed decc;fh
relation ofx by diStrib[l(Jktaing the application of transforms,.
Tm from the product[(6) across multiple sensors. Befo% .
the decorrelation, each sub-vectd?) of x is the output rthonormal matr&,, o 0
of a sensor and is stored locally in that sensor. Applying E,, =arg min jdiag(E'S{imim)E)] ;  (15)
eachT,, to sub-vectors(im), x(im) requires point-to-point B2 2n 2n
communication of ondn-dimensional sub-vector betweerwhere »n 2, is the set of all valid?h  2h orthonormal
sensorsip, and j,, consuming an amount of energyftransforms. In practice, the optimization Bf is precisely
E(h;im;jm), proportional to some measure of the distandéie same problem as the scalar SMT design presented in
between these sensors. After applyifig, the resulting Seclll. OnceE, is selected, we partition it into four h
decorrelated sub-vectoré'n) andx{m) are cached at the blocks, "
sensor used to compute this pairwise decorrelation, avoid- E@D|E@:2)
ing communicating one sub-vector back to its originating Em = 7 o
sensor. Finally, the total communication energy required
for the entire decorrelation is given by

e minimization in [(Il) for a xed subvector pair
m:im) can be recastin terms 8timm) and the2h 2h

Er(ﬁ:l) Er(ﬁ:Z)

and then we obtain the transforify, using Kronecker
. S . X S product as
E(h;it;  simsjn sim)= E(him;im): (7) o , . ,
m=1 Tm:J(|m,|m) E'g-vl).p J('mxlm) Er(‘r:‘IIHZ)
+ J(Jm i) Er(§§2) + J(Jm dm) Er(ﬁ:l) : (16)
+1p p (J(im:im)+J(im:jm)) Ih

hereJ() isalL L matrix given by

B. The Design of the Vector SMT

We design the vector SMT decorrelating transform from
training data, using the maximum likelihood estimation of i I / _
the data covariance matrix. L¥t = [x1;  ;X,] 2 RP ; g6y - ddf i°=iandj’=j | (17)
be ap n matrix where each columm; is ap-dimensional 90 Ootherwise .
zero mean Gaussian random vector with covariaRcén Fig. [3(a) illustrates the relationship between @e  2h

i t
gr—;neral, a C%Vﬁf('jance C?n e delcomposeﬁz af;_g T". orthonormal transformEr,, and the block spars@  p
W ﬁre IS It e !agonah_elgenva “he rlnatr||_>l<< all'h 'Sd ar; orthonormal transfornil,,. The four blocks ofE,, are
orthonormal matrix. In this case, the log likelihood Xf i serted in the appropriate block locations to form the
givenT and is gn/en by n larger, block sparse matriX,,. The overall change in
logpr;y (X)= Etr[diag(TtST) 1 EIog(2 )Pj j; the log likelihood in [[8) due to applyin@m, to X, and
(8) maximized with respect t§ Tm) is given by (see Apfi.IA)

where S = %th . When constrainingT to be of n jdiag(Tt Sm Tm)j
the product form of [(6), the joint maximum likelihood 09 Pt T Xm)= 2 idiag(Sm)j
estimates® and P are given by o alin i)y
f=arg  gnin diag(T!ST) @) = N ogldiag(En Sn™ " Em)i
T="M_ T 2 Jdlag(sr(_fl]m ,Jm))j
N .
=diag( T'sT): (10) _n og 1 F2. (18)
Since the minimization in({9) has a non-convex constraint, 2 mim

its global minimizer is difcult to nd. Therefore, we where we introduce the concept of a “correlation score”,

use a greedy procedure that designs each figwm =  Fi, ;. dened by
1, ;M, independently while keeping the others xed. U —
We start by settings; = S and X1 = X, and iterate over H jdiag(EL, S "m)Em)j )
the following steps: + - Gm i )N :
jdiag(Sm" " ")

Fim:jm =

Tm=arg min  diag(T, SnT 11
m=arg 9(Tm Sm Tm) (11) In App.[B, we show that the correlation score generalizes
s ., =Ttg T 12) the concept of the correlation coef cient to pairs of random
m+1 m*<m I'm ( ) . . . . .
_ _ vectors and derive its main properties. The pair of sub-
Xme1 =T Xm (13)  vectors with the largest value B, ;.. produces the largest

where is the set of all allowed pairwise transforms. Sincéncrease in the log likelihood if.(18). Therefore, we use the
Tm operates exclusively or(') andxUm), once the pair maximum value of;;, as the criterion for selecting the
(im;im) is selected, the design df, involves only the pair (i, :jm) during the design of, in (). Finally, the
components oK, associated with these sub-vectors. Lef|gorithm in Fig.[B(b) summarizes this greedy procedure
X,(T{m) andX,(T{m) beh n sub-matrices oK, associated to design the vector SMT.
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Fig. 2: (a) In the produck = Tr‘n x, thep p block-wise sparse transforifi,, operates over thp-dimensional vectok, changing only thh components associated

with the h-dimensional sub-vectors!'m):x(m) (shaded). (b) scalar SMT decorrelation= E'x. EachE plays the role of a decorrelating “butter y”, operating

nan a cinala nair nf ranrdinatac (P R-nnint EET eaan ac a narticular raca gfafhe SMT where the butter ies are constrained in their ordering and rotation ang)es. (d
or pair gfinstead of a single coordinate pdlry, is an instance of the scalar SMT with

oIS,
INnitialization
forall the 1 i L andl 4 L do
O\ ' G o1 XD gy !
X s ST X ix
P R [ 7% T pp—— '—-—),.. (i )
{ | s E ComputeScalarSMT (s JI 1)
I R b ' . |, idiag( E's(i DE)j 2
1 . 1 l jdiag( s (1 ))j
I ' S end
: " : //Main Loop
1, S| 1 HOE fom =1; ;M do
! \ ! | '____ [ CLC A - (im:im) argmax  Fjj )
Em ComputeScalarSMT (simiim)y
+ i Tm MapT oP airwiseT ransform (Emiim:im)
! ! ! Update matrixF j
T T . "
' ' Sr('r:d ) Eﬁns(lmUm)Em
) *, end

(@ (b)
Fig. 3: (a) Mapping from th&h  2h orthonormal matrixgE to thep p block-wise sparse matriX;, associated with théin, ;jm ) sub-vector pair. (b) The vector
SMT design algorithm.

C. The Vector SMT Design with Communication Enerdikelihood is given by

Constraints Lt it Toy Xm)= Ler ity Km) L1y (Xm)
We extend the vector SMT design in Sdc_1V-B to _n jdiag(Tt, Sm Tm)j
account for the communication energy required for dis- - 5' idiag(Sm)]
tributed decorrelation in a sensor network. When e&gh o
i j E(h7|mv]m) (20)

operates ox('m) andx{n) in a sensor network, it requires
an amount,E(h;in;jm) of energy for communication.

In a scenario with a constrained energy budget, selecting
sensorsim and j, based on the largedt;  ;, can be Therefore, when designinfy, with energy constraints, we
prohibitive if these sensors are several hops apart in thelect the pair of sub-vecto$m,;jm) with the smallest
network. We augment the likelihood ifi] (8) with a linearalue of(1 F? j ye? E(himim)=n-je. the pailfim;jm)
penalization term associated with the total communicatianat simultaneously maximizes the correlation coef cient
energy required for distributed decorrelation. The augﬁmjm and minimizes the communication energy penalty,
mented log likelihood is given by E(h:im;jm) in order to increase the augmented log
likelihood in (20) by the largest amount.

%Iog 1 F2. E(h;im;im)

ImJm

b4
Lty (X)=log pr;)y (X) E(him:im) = (19)
m=1 D. Model Order Identi cation

The parameter has units of log likelihood/energy, and Let M w beya vector SMT model with decorrelating
controls the weight given to the communication energyansformT = ~M_ T,,. Here, we discuss three alterna-
when maximizing the likelihood. When = 0, the de- tives for selecting the model order parameidr,
sign_becomes the unconstrained vector SMT design in1) Fixed Maximum Energy:We selectM such that
Sec[TV-B. When we applfi, to X, and maximize[(19) the total energy required for the distributed decorrela-
with respect td{ Tn), the overall change in the augmentedion, T'x does not exceed some xed threshdf, i.e.,



P
mzl E(h;im;jm) E o. This thresholdl is xed based V. ANOMALY DETECTION

on a pre-established maximum energy budget allowed for\e yse the vector SMT to compute the covariance

the distributed decorrelation. ; ; :
AR . estimate,R of the p-dimensional vectorx for the pur-

2) Cross-Validation:We partition thep  n data sam- nse of performing anomaly detection using the Neyman-
ple matrix X into K, p  ng matrices X, X = pearson framework[ [27]. Here, we rst formulate the
[X@i Xkl andde neX ) as a matrix containing the anomaly detection problem, and then describe the ellipsoid
samples inX that are not inX (). For eactkk =1; K, yolume measure of detection accurafyl[44] used in the
we designM y from Xy, and compute its log likelihood experimental section.
over Xy, i.e.,logpm ,, (X)jX (k). We selecM so that it
maximizes the average cross-validated log Iikelih@,[40/}\ Problem Formulation

_ 1 x ; . Let the p-dimensional vectox be an aggregated mea-
LMm) = j logbwy (XwiXao) = (1) gyrement from all sensors in the network. We presume
. =1 L that x is typical (non-anomalous) if it is sampled from a
3) Minimum Description Length (MDL) Criterion:  mytivariate Gaussian distributiol (0; R) or anomalous
Based on the MDL principle[[41][]42]/143], we select it js sampled from a uniform distributio(x) = c, for

M such that the modeM v has the shortest encoding.some constart _Formally. we have the followin
among all models, of both its parameters and the sampignntheses, [43]. {46 v g

matrix, X . The total description length d#l , in nats is Ho:x N (O;R)
given by Hy:x U : (26)

m = logpm, (X)+ }MK log(pn) + 2MK log(2h)  where Hy and H; are the null and alternative hy-
+2M loa(L) - 2 22 potheses respectively. According to the Neyman-Pearson
og(L) ; (22)  lemma [27], the optimal classi er has the form of the log
where  logpu , (X) nats are used to encod¥, likelihood ratio test,

%M K log(pn) nats are used to encode k& real-valued p(x;H1) ]

angles of the Givens rotations acrossMllpairwise trans-  ( X) =10g (X Ho) =log c logp(x;Ho)

forms, 2MK log(2h) nats are used for th®1K rotation o 1 1

coordinate pairs, and nally2M log(L) nats are used for =log c+ E|ng + ZlogjRj+ =x'R x? o
the indices of sub-vector pairs of tiéd pairwise trans- 2 2 2

forms. Our goal is then to selebt such that it minimizes _ . . . . (27)
‘w in @32). Initially, v decreases wittM because it is This likelihood ratio test maximizes the probability of

dominated by the likelihood terntogpy ,, (X ). However, detectionp(H;H1) for a xed probability of false alarm,

whenM is large, the other terms dominatg causing it P(H1;Ho), which is controlled by the threshold,. We
to increase adl increases. Therefore, we selddt that Incorporate all the constant terms into a new threshadld,

minimizes"w by picking the rst value ofM such that Such that the test in[(27) becomes

v (X)) 1 Dr(x)= x'R x? 2% (28)
M+l M= Iog““ilX + EK log(pn) If we further assume tha&R = T T¢, whereT and are
My (X) orthonormal and diagonal matrices respectively, the test i
+2K log(2h) +2log(L) @2) can be written as a weighted sumpfincorrelated
_n og(1 F2 y }K log(pn) coordinates, * 2
¢ S loa( L ® ()= o ? (29)
+2K log(2h) + 2log(L) O: oy ’
1=
This condition leads to this new stop condition for the main . ) _
loop of the algorithm in FigI3(b), wherex = T'x, and ; []i (1 i p). Finally,
5 K log(_pn )+4 K log@ h)+4log( L) because the sum ifi_{P9) involves only independent terms,
Fo.. 1 e " © (23) it can be evaluated distributedly across a sensor network

It is easy to generalizgy in (22) to the case where eachwhile requiring minimum communication.
pairwise transformT,, has a different number of Givens

rotations,K m, resulting in B. Ellipsoid Volume as a Measure of Detection Accuracy

<(general ) _ 1 The ellipsoid volume approach [35],_144],_147] mea-
M '= logpu,, (X)+ 5 Kmlog(pn) sures anomaly detection accuracy without requiring la-
m=1 beled anomalous samples. Because anomalies are rare
b and loosely de ned events, we often lack enough test
+2 Kmlog(2h)+2M log(L) : (24) samples labeled as anomalous to estimate the probability
m=1 of detection,p(H1;H1) required for ROC analysig [27].

Finally, when‘fv?i"lera') “(general ) s satis ed, the Instead of relying on anomalous samples, the ellipsoid

new stop condition for the loop in Fifl 3(b) is given by volume a_pproach seeks to measure detgctlon accuracy by
K o1 1og( P %4 K sy Tog@ h)edlog( L) characterizing how well a covariance estimafemodels
1 e n : (25) the typical data samples. It evaluates the volume of the

F'2

imiim
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reglon within the eII|p50|d,x IQ X for a certain Method g Algorithm Communication Decorrelafion

probability of false alarm controlled by. Such a volume

Vector SMT ~ Vector SMT Between pairs of sub-vector pairs

is evaluated by (distributed) nodes / caching in network
p=2 q — Centralized Scalar SMT Vector outputs to coordinate pairs
V(IQ ) — p ]IQJ . (30) centralized node at single node
! (1 + p:2) : Independent None Partial likelihoods -
to centralized node
We useV (R; ) as a proxy for the probability of missed de- @

tection,1 p(H1;H1). Smaller values o¥/ (R; ) indicate
smaller chances of an anomalous sample lying within this
ellipsoid, and therefore being wrongly classi ed as typica
Therefore, for a xed probability of false alarm, smaller . —
values ofV (R; ) indicate higher detection accuracy. — £

1"#$%&

VI. EXPERIMENTAL RESULTS

We provide experimental results using simulated and
real data to quantify the effectiveness of our proposed (b)
method. In all eXpe”mentS’ we a_ssumg Comnjunlcatlopl . 4: The experimental setup: (a) Summary of the several approaches to sensor
occur between sensors connected in a hierarchical netw ut decorrelation compared and their main properties. (b) Steps for decorrelation

i i i i d anomaly detection used in our experimental results. Each sensor encodes its
with bmary tree top0|09y’ _and that communication of Ongt t as anh-dimensional vector using PCA. Experiments with arti cial data
scalar value between adjacent Sensors uses one Unlfreﬂp ce the sensor vector outputs with arti cially generated random vector data.
energy. We compare the vector SMT decorrelation Wifﬁ‘e outputs are processed in the network before a detection decision is made.

two other approaches for processing the sensor outpt

[r&s™++,-I"$8'10%2(|

2
a centralized and an independent one. In the centraliz /&0 =) |:| b
approach, all sensors communicate theidimensional :_“ : °ﬂ
vector outputs to the root of the tree. This approach  .{ileq~, =) |:| 4 E
very communication intensive, but once all the data 8 P % D
centrally located, any decorrelation algorithm can be us: m b
to decorrelatex. We choose the scalar SMT algorithrr !,.,,ﬁjg&,oq - " ‘;F]
because it has been shown to provide accurate decorrela v ' ﬂ

from limited training data since it approximates the max-
imum likelihood estimate. In the Independent approac&ég. 5: Generation of a data sample,aggregated from correlatdu-dimensional

geach sensor computes a pal’tia| '”ke“hOOd of its outpednsor outputs), i = 1; ;L, using an arti cal model. (a) First we draw
independently and communicates it to the root of the treschx(? independently from thed (0;R) distribution, with[R]s = /7 I
The root sensor adds the partial likelihoods from all sefben. we permute individual coordinates sofacross alix, i = 1; = L fo

. . - . .spread correlations among all sensor outputs. (b) E&Chis the output of a sensor
sors and makes a detection decision without decorrelat'ﬁé)nnected to other sensors in a hierarchical network with binary tree topology.

the sensor outputs. This requires the least communication
among all approaches compared. Hi§. 4(a) summarizes

these approaches in terms of their main computation afiRlis = I ®, where =0:7. Then we perform random
communication characteristics. Finally, Fig. 4(b) shotes t permutations of the individual coordinates facross all
event detection simulation steps by a camera network 4),i =1; ;31 to spread correlations among all sensor

several of our experiments. Each camera sensor recootgputs. Finally, eachk() is the output of a sensor
an image and encodes its-dimensional vector output interconnected in a hierarchical network with binary tree
using principal component analysis (PCA). We process thepology.
outputs using one of the approaches in K. 4(a) beforeFig.[d shows the vector SMT model accurac. com-
making a detection decision. munication energy required for decorrelation for three
different choices of pairwise transforms: scalar SMT with
; ; : - o xed number of Givens rotations, scalar SMT with MDL
A. Simulation experlments using arti cial model data criterion, and Karhunen-lave (eigenvector matrix from

In these experiments, we study how the vector SMihe exact diagonalization of the pairwise sample covari-
model accuracy changes with (i) different choices afnce). We measure accuracy by the average log-likelihood
decorrelating transforms used as the pairwise transfognthe vector SMT model oven = 300 testing samples
between two sensor outputs, and (i) different values @fig.[@(a)), and the ellipsoid log-volume coveri®§% of
the energy constraint parameterused in the constrainedthe testing samples, i.e., fa@o false alarm rate (Fid6(b)).
design in Sed_IV=C. We simulate a network with= 31  |n general the model accuracy improves to an optimal level
sensors, in which each sensoroutputs a vectorx) and then starts to decrease as more energy is spent with
with h = 25 dimensions. These sensor vector outpujsairwise transforms. This decrease in accuracy happens
are correlated. Figl]15 shows how we generate a dajecause vector SMT models with a large number of pair-
samplex, aggregated from correlated sensor outpdts, wise transforms tend to over t the training data. For scalar
i=1; ;31 First, we draw eack(!) independently, from SMT-MDL pairwise transforms, the MDL criterion adjusts
theN (0; R) distribution, with theh h covariance matrix, the number of Givens rotations for each new pairwise
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Fig. 6: Vector SMT model accuracys. communication energy consumption using
100 training data samples from an arti cial model. Comparison of different vector
SMT pairwise transforms for a range of communication energies: (a) average log-
likelihood over300 test samples; (b) ellipsoid log-volume coveri@g% of the test
samples 1% false alarm rate). The choice of scalar SMT MDL produces the best
increase in accuracy, measured by both metrics. Here, a unit of energy is the energ
amount required to transfer one scalar value in one hop.
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Fig. 7: Comparison of vector SMT energy constraint parameter values for a range of o Dist Proc. (vector SMT)
communication energies usiri@0 training data samples from an arti cial model. % 02 02 o o5 1 o 03 07 o5 o8 1
(a) average log-likelihood ove300 test samples; (b) ellipsoid log-volume covering Pea Pea
99% of the test samplesl@ false alarm rate). Vector SMT models with larger (e) 0]

are the most accurate for xed small energy values. For large energy values, . . . . .
the constrained models tend to exhibit sub-optimal accuracies compared to Hig. 8: Simulated 3D space with bouncing sphere: the sphere takes randdionsosi
unconstrained vector SMT. Here, a unit of energy is the energy amount requir@@ng the line indicated by the double arrow (a) typical behavior; (b) anomalou
to transfer one scalar value in one hop. behavior. The camera views: (c) top (X-Y dimensions); (d) side (X-Z dimesgion

The detection accuracies using independent processing and vector SMT joint
processing: (e) ROC curve; (f) “coverage plot” with log-volume of ellipsogd

transform according to an estimate of the correlation stff°Pa!iy of faise alarm.
present in the data[9], helping to prevent over tting. Sinc

it is overall the most accurate, the scalar SMT-MDL is ou,tig_ [@(d) shows the side (X-Z) view captured by camera

pairwise transform of choice during all other experiments “\gte that it is impossible to tell anomalous from typical
in this paper. o sphere positions by looking at the views in Figk. 8(c) and
Fig.[4 shows model accurass. communication energy () separately. Instead, one needs to process both views
for three choices of the energy constraint parameter {ngether to extract useful discriminant information. Each
The accuracy is measured by average model log-likelihoggera outputs a vector di = 10 dimensions with
(Fig. [(2)) and ellipsoid log-volume coverir@% of the s |argest PCA components. The joint output from both
testing samples (Fid.] 7(b)). The parametesselects the cameras form a sample. We u$60 typical samples to
trade-off between model accuracy and energy consumptigfyin the detectors using vector SMT decorrelation and
For a small xed energy value, the vector SMT with largestqependent processing of the views. During testing, we
value produces the most accurate model. For large val 200 samples, disjoint from the training set, witto0
of energy, the constrained vector SMT accuracy tends@cm and anothet 00 anomalous samples '
level out at sub-optimal values while the unconstraine Fi ' L :
. gs.[8(e) and (f) compare the detection accuracy using
vector SMT has the highest accuracy. both independent processing and vector SMT to decorrelate
) ) . ) o ) the joint camera outputs. Both the ROC analysis (Hig. 8(e))
B. Simulation experiments using arti cial moving sphereind ellipsoid log-volume coverage plot (Fig. 8(f)) suggest
Images that when the two views are processed independently,
In this experiment, we apply the vector SMT to decorrghe detector cannot distinguish anomalous from typical
late two simultaneous camera views for anomaly detectictRmples. However, when the vector SMT decorrelates both
We generate arti cial images of a 3D sphere placed &iews, anomaly detection is very accurate.
random positions along two straight diagonal lines over Fig.[d shows sets with ve eigen-images associated with
a plane, as illustrated in FigEl 8(a) and (b). We refer the largest eigenvalues for both the independent [Fig) 9(a)
sphere positions along the line in Fig. 8(a) as typical onesnd the vector SMT (Figl]9(b)) processing approaches.
while referring to positions along the mirrored diagondh the independent processing case, each eigen-image is
line in Fig.[8(b) as anomalous ones. Two cametas @) associated with a single camera view. On the other hand,
monitor the sphere locations in the 3D region. Hiy. 8(d¢he vector SMT processing produces eigen-images, each
shows the top (X-Y) view captured by camera 1, whilenodeling both camera views jointly.



TABLE I: Correlation score values for all pairs of views in the courtyard dataset.

The correlation score measures the correlation of camera outputs between pairs of

camera views. Pairs of cameras capturing the same events simultaneously have the

highest correlation scores.
1

3 4 5 6 7 8 0
2 - 100 059 066 059 070 0.76 0.00
3 - - 1.00 061 049 059 062 0.00
4 - - 1.00 057 066 068 0.00
5 - 1.00 059 0.60 0.00
6 - 1.00 0.72 0.00
7 - - 1.00 0.00
8 - 1.00

approaches. The centralized approach is very accurate,
but it requires signi cant communication energy. In the
vector SMT decorrelation, each pairwise decorrelation
increases the detection accuracy while consuming more
energy. There is a trade-off between detection accuracy
Flg. 2 Hgenimages of the moving sphere experiment The ve eigenimagetnd energy consumption, and one can choose the number of
(columns) are associated with the ve largest eigenvalues in decreasing order (left-fo- .~ . .

fight). Each eigen-image has two views (top and bottom rows). (a) when the campl@irwise transforms to apply based on the desired accuracy
views are processed independently, each eigenvector models a single viewetb) wand available energy budget_ Fina"y' detection is more
the camera views are processed jointly using the vector SMT, each eigenvector L .

models both views together. accurate when using vector SMT decorrelation compared
to the scalar SMT for the same energy consumption. This
C. Simulation experiments using arti cial 3D sphere cl ifference in accuracy is due to the inherent constraint of
~ p g articial b sphere CloUGhe yector SMT decorrelating pairs of vectors, which tends
Images to produce better models of a distribution when a limited

In this experiment, we monitor clouds of spheres usingumber of training samples is available.
twelve simultaneous camera views for the purpose of
anomaly detection. We arti cially generate sphere cIoudB . . . . . .
randomly positioned in the 3D space, each contair8g O Simulation experiments using real multi-camera images
spheres. There are two types of clouds according to theFig. [I2 showsL = 8 camera views of a courtyard,
sphere position distribution: (i) typical: the sphere piosis constructed from video sequences from the UCR Vide-
are generated from thl (0;13 3) distribution, but only oweb Activities Datasef [48]. Each camera records a video
positions with distance from the origin exceeding a xedequence of approximatel:2 min, with 30 frames/sec,
threshold are selected, so that the resulting cloud isWwollogenerating a total of7600 frames. The sequences are
and (ii) anomalous: the random positions for the spheregnchronized, so that multiple cameras capture events
are drawn from thé\ (0; 13 3) distribution without further simultaneously. We subsamglen 3 frames from th&600
selection so that the resulting cloud is dense. We monitiseme sequence, and u8€0 of the selected samples to
the same 3D cloud using = 12 different cameras from compute the encoding PCA transforms for each camera
different viewpoints, and each camera encodes its outpi¢w. The nal courtyard dataset has734 samples of
using PCA to a vector dfi = 10 dimensions. Fid._10 showsp = 160 dimensions, with each view encoded in a sub-
the twelve camera views for both a typical cloud samphector ofh = 20 dimensions.

(Fig.[I0(a)), and for an anomalous one (Figl 10(b)). Each Table[l shows correlation score values for all view pairs.

data sample is formed by aggregating the twelve camdvairs of highly correlated views, capturing mostly the same
outputs. We generatd00 typical samples to train the events (as with cameras 1 and 6), receive higher score
detectors, and anoth@00 test samples, witl100 typical, values than weakly correlated view pairs. The events cap-
and 100 anomalous. tured by camera 8 are unrelated, and therefore uncorrelated

Fig. [11 shows anomaly detection accuracy based tmthe events captured by the other cameras, resulting in
ROC analysis (Fig[Cd1(a)), and log-volume of ellipsoighegligible correlation score values.

(Fig.[T1(b)). Among all methods compared, detection using Fig. [I3 shows two eigen-images associated with the
independent processing is the least accurate, while bato largest eigenvalues for both the independent and vec-
the centralized processing using scalar SMT and the disy SMT approaches. In the independent processing case
tributed processing using vector SMT lead to high detectidfig. [13(a)), each eigen-image corresponds to a single
accuracies. Intuitively, as the views in F[g.] 10 suggest, damera view, containing no information regarding the re-
is dif cult to distinguish between typical and anomaloudationship between different views. On the other hand,
samples by processing each view independently. Inste#tte vector SMT eigen-images (Fig.]113(b)) contain joint
the information that helps distinguishing an anomalousformation of the correlated views. Since camera view 8
cloud from the typical ones is contained in the joint vievis not correlated with any other view, it does not appear
of the camera images. together with others in the same eigen-image.

Fig.[I1(c) shows the ellipsoid log-volume f&fs false Fig.[I4 compares the accuracy of all approaches mea-
alarm ratevs. the communication energy for the differentsured by the log-volume of the ellipsoid covering test
approaches compared. Independent processing is the lsastples. We split the samples into a training set, \8@b
accurate while requiring the minimum energy among aslamples, and a test set, with34samples. Fid._14(a) shows

(b)
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Fig. 10: The twelve camera views og a 3D sphere cloud sample: (a) a typicalesgingtiow cloud); (b) an anomalous sample (dense cloud). It is dif cult teriisinate
anomalous from typical samples by processing each view independently. Insealisaiminant information is contained in the joint camera views.
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Figs[I5(a)-(c) show ROC curves for detection of anoma-
lous samples generated by an arti ciifold increase in
% the largest component of the vector output of a single
camera view, and injected in vieWs6, and8, respectively.

sso\\ while requiring signi cantly less communication energy.

3
4
S

@
]
S

D
Ellipsoid Log Volume(p=120)

0 [ e sool| gependent roc. We use 200 typical samples to learn the decorrelating
ok &= Cenir Proc. (scalar SMT) -2 Cent. Proc. (scalar SMIT) transform and the remaining samples for testing. Since
0 0.2 0.4 0.6 0.8 1 10 . . .

Pra Prob. False Alarm views 2 and6 are correlated with other views (see Tdble I),
@ (b) detection of anomalies in these views is accurate when we

680) -©-Dist. Proc. (vector SMT)
B X Independent Proc.

X _Centr. Proc. (scalar SMT)|

decorrelate the views using the vector and scalar SMT
approaches, and very inaccurate when we process the
views independently. Because viéis uncorrelated with
other views, decorrelation does not help improve detection
accuracy and all approaches are inaccurate.

Figs.[1%(d)-(f) show the ROC curves for detection of
SRR S S what we call the “Ocean's Eleven” anomaly, injected into
Eneray the camera view®, 6, and 8, respectively. This anomaly
© is generated by swapping images of a single view between
o o0 e e St i L gy ewo samples captured at different instants. We refer to it as
yieldsgto the most acr::urate d%tection results for all false alarm rates. (©] Iog-voluru'ée Ocean's Eleven anomaly because of the resemblance
of ellipsoid for 1% false alarm rate, i.99% coveragevs.communication energy. \ith the anoma|y created to trick the surveillance cameras
gﬁéeﬁfpfm't of energy is the energy amount required to transfer one scalar valucaﬂring the casino robbery in the Ocean's Eleven [49].
Since views2 and6 are correlated with other views, detec-
tion is accurate when we decorrelate the views with scalar
the ellipsoid log-volume computed for all false alarm rate@nd vector SMTs, and very inaccurate when we process
The vector SMT is the most accurate approach, with itg€ views independently. Because vi@ais uncorrelated
volumes being the smallest across all false alarm rates. THih the other views, decorrelation does not help improve
vector SMT volumes are also smaller than the scalar SMigtection accuracy and all approaches are inaccurate.
volumes. As discussed in Sdc. VI-C, the vector SMT is Fig. [I3(g) shows the ROC curves for detection of a
more accurate than the scalar SMT because of the natatspicious (anomalous) activity where people coalesce in
of its constrained decorrelating transform when trainetth wiat the center of the courtyard. Figl16 shows the typical and
a small training set. Fid._14(b) shows results of the sanamomalous samples used in this experiment. We st
experiment as in Fig_14(a) with the vector SMT modedamples where a group of people coalesces at the center of
order selected so that the distributed decorrelation caie courtyard and label them as anomalous, while selecting
sumes only50% of the energy required for the centralizedanother200samples where the group does not coalesce and
approach. Figi—14(c) shows the ellipsoid log-volume for label them as typical. We use anott860 typical samples
xed false alarm rate @:8%) vs. communication energy. to train the vector SMT. The vector SMT decorrelation in
We observe the same trends observed in the sphere clthid experiment consumeég% of the communication en-
experiment in Sed_VIIC. The independent approach harsgy required for the scalar SMT. Detection is very accurate
low accuracy while requiring low communication energywhen using vector and scalar SMTs for view decorrelation,
The centralized decorrelation is highly accurate, but-t rend inaccurate when processing the views independently,
quires large amounts of communication energy. The vectgpecially for low probabilities of false alarm. Similarlg t
SMT increases the detection accuracy after each pairwibe detection of dense clouds (see $ec. VI-C), it is dif cult
transform. Finally, the vector SMT approach has similao detect people coalescing when processing camera views
accuracy to the centralized approach for all false alaresraindependently. Instead, one needs to to consider the views
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Fig. 12: The courtyard dataset from the UCR Videoweb Activities Dataset: eighgreanmwith ids 1 to 8 from left to right, monitor a courtyard from different viewpmi
Several activities in the courtyard are captured simultaneously by several cameras.

@) (b)
Fig. 13: Two eigen-images from the eight camera views of the courtyard dataset. Banhreage has eight views (columns) associated to it. (a) independent processing
of camera views: each eigen-image corresponds to a single view and does not comgition information among multiple views; (b) joint processing modélethe
vector SMT: each eigen-image contains joint information of all correlated views.

in terms operating distributedly, under communication en-
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W o w o » A, Change in likelihood due to the decorrelating transform,
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Let X be ap n matrix with n p-dimensional samples
with covarianceR. Assuming the covariance can be de-
composed intR = T T!, where is diagonal andl is
orthonormal, the Gaussian log likelihood Xf is given by

n . n ..
logpr;) (X) = itr[dlag(T‘ST) '] 51002 )" i;

1290} ¢
12800 §
1270
1260f 4
1250}
12400}
1230

2=0.008)

log-vol(P

12201 g - (31)
T 200 a0 sde oo 1000 1200 whereS = 1XX ! is the sample covariance. The maximum
(c) likelihood estimate of givenT is
Fig. 14: Detection accuracy measured by the ellipsoid log-volume for the emdrty It T) = diag( ft Sf) .

data set. Coverage plots showing the log-voluuse probability of false alarm: ; ; R . ; ;
(a) model orderM = 7, matching the energy of centralized processing, (b)The Iog likelihood in K3]l) maximized with respect tols

model orderM = 4, matching50% of the energy consumed for the centralizedgiven by

processing; (c) log-volumes. communication energy for xed probability of false np np n o .

alarm, Pes = 0:008. When the communication energy is equal to the levellogp, . X)= — —log(2) = |ogjd|ag(TtST)J :

required to execute the scalar SMT at a centralized node, the vector SMT has betteg (mt Ty 2 2 2

detection accuracy. When the energy level5sB% of the level required by the (32)

o S ke o v e S e o g " *Similarly, for T = 1, wherel is thep p identi
0Py 1 (X) = = Zlog(2 ) 3 logjdiag(S); -

jointly for good detection accuracy. (33)
Therefore, the change in likelihood due Tois given by

VIl. CONCLUSIONS the difference betweefl (32) arfd{33):
We have proposed a novel method for decorrelation of®9 Pcr;t 1) (X)=109 Per;q 1)) (X) - 10gp; ¢ 1y (X)
vector measurements distributed across sensor networks. _n__ jdiag(T'ST)j .
The new method is based on the constrained maximum T 2% jdiag(8)] (34)

likelihood estimation of the joint covariance of the mea-

surements. It generalizes the concept of the previousl )

proposed sparse matrix transform to the decorrelation Bf The Correlation Score

vectors. We have demonstrated the effectiveness of the new he correlation score is a measure of correlation between
approach using both arti cial and real data sets. In additidwo vectors. This correlation score is used in $ec. 1V-B to
to providing accurate decorrelating transforms and engbliselect the most correlated pair of sensor vector output for
accurate anomaly detection, our method offers advantagisorrelation.

11



oo 1
0.8
0.6
w2
0.4 4
0.2] — Independent Proc. 0.2] — Independent Proc. 0.2] ‘— Independent Proc. 0.8
-©-Dist. Proc. (vector SMT) [ ©-Dist. Proc. (vector SMT) e ©-Dist. Proc. (vector SMT)
8- Centr. Proc. (scalar SMT) s -&-Centr. Proc. (scalar SMT) g -&-Centr. Proc. (scalar SMT)
% 0.2 0.4 0.6 0.8 1 % 0.2 0.4 0.6 0.8 1 % 0.2 0.4 0.6 08 1 0.6|
Pea Pea Pea o
a
@) (b) (©
0.4]
1 > 1 > 1
0.8 % 0.8 7t 0.8 0.2 “|—Independent Proc.
= “ - -S-Dist. Proc. (vector SMT)
06l /.’ 06 ya 06 of=e” -8~ Centr. Proc. (scalar SMT)
® ® K 0 0.1 02, 03 0.4 05
0.4 ; g H 0.4 ; H 0.4 ; ; FA
0.2] 5 — Independent Proc. 0.2] — Independent Proc. 0.2] — Independent Proc.
-©-Dist. Proc. (vector SMT) ©-Dist. Proc. (vector SMT) ©-Dist. Proc. (vector SMT)
8- Centr. Proc. (scalar SMT) -&-Centr. Proc. (scalar SMT) -&-Centr. Proc. (scalar SMT)
% 0.2 0.4 0.6 0.8 1 % 0.2 0.4 0.6 0.8 1 % 0.2 0.4 06 0.8 1
PFA pFA pFA

(d) (e) ®
Fig. 15: ROC analysis of detection accuracy: (a)-(c) arti cially generated anomalies4bfpld increase in the largest eigenvalue of a single view for views 2, 6 and 8,
respectively. (d)-(f) Ocean's Eleven anomalies, generated by swapping images ofeacsintgra view between samples for views 2, 6 and 8, respectively. Decorrelation
improves detection accuracy when anomalies appear in correlated camera views (2 and 6). Vdhemtlg is inserted in a uncorrelative view (8), decorrelation methods
do not improve the detection accuracy. (g) people coalescing in the middleafrgyard: scalar and vector SMTs are highly accurate for small probabilities ofdfialsa
with vector SMT consuming approximately 60% of communication energy reqtorethe scalar SMT.

Proof:
()= )+ hy)  h(cy) (35
= Zlogl(2 e iRyl + 3 l0g[(2 e iRy ]
2 10g[(2 € iRy ] (36)
_ 1, RiR]
“2'%% TRy e
1
= 5Iog[l F5 1 (38)
|

Proposition A.2:Let x andy be both unidimensional

(b)
Fig. 16: Samples used in the experiment detecting people coalescing indtike o i i i i
the courtyard: (a) Typical samples; (b) Anomalous samples, with images ofq)eo;g§calar) Guassian random variables with covarlancés

coalescing. and 5 respectively, and correlation coef cieny . Then,
Fo =1 xyl. . o
Proof: We have thajRyj = 2 andjR,j = 5
De nition Letx andy be two vectors with covariancéy, The covaréance of the joint distribution of and'y is
andRy respectively, and joint covariand®yy . The vector R,, = x woxy
correlation coef cient between andy is ¥oxyoogy
iRyl
Foy= 1 —— (39)
S Y JRxjiRy]
Fyy = IELAL7 S 22 2 22
JRxJIRy] _ Xy x xy
= 1 — 72 (40)
Proposition A.1:Letx andy bep-dimensional Gaussian q Y
random vectors. The mutual informatid (x; y) between = 1 1 %) (41)
x andy in terms of their vector correlation coef cient is q__
= & (42)
1 =j xyj (43)
I (x;y) = EIog 1 F n
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