
1

Retransmission Delays with Bounded Packets:
Power law body and Exponential tail

Jian Tan, B. T. Swapna, and Ness B. Shroff
Departments of ECE and CSE

The Ohio State University

Abstract—Retransmissions serve as the basic building block
that communication protocols use to achieve reliable data trans-
fer. Until recently, the number of retransmissions were thought
to follow a geometric (light-tailed) distribution. However, recent
work shows that when the distribution of the packet sizes have
infinite support, retransmission-based protocols may result in
heavy tailed delays and possibly zero throughput even when the
afore-mentioned distribution is light-tailed. In reality, however,
packet sizes are often bounded by the Maximum Transmission
Unit (MTU), and thus the aforementioned result merits a deeper
investigation.

To that end, in this paper, we allow the distribution of the
packet size L to have finite support. Under mild conditions,
we show that the transmission duration distribution exhibits a
transition from a power law main body to an exponential tail.
The time scale to observe the power law main body is roughly
equal to the average transmission duration of the longest packet.
The power law main body, if significant, may cause the channel
throughput to be very close to zero. These theoretical findings
provide an understanding on why some empirical measurements
suggest heavy tails. We use these results to further highlight the
engineering implications of distributions with power law main
bodies and light tails by analyzing two cases: (1) The throughput
of on-off channels with retransmissions, where we show that even
when packet sizes have small means and bounded support the
variability in their sizes can greatly impact system performance.
(2) The distribution of the number of jobs in an M/M/∞ queue
with server failures. Here we show that retransmissions can cause
long-range dependence and quantify the impact of the maximum
job sizes on the long-range dependence.

Index Terms—Retransmissions, delay distribution, throughput,
power law body, heavy tails.

I. INTRODUCTION

Retransmissions are fundamental in ensuring reliable data
transfer over communication networks with channel errors.
Traditionally, retransmissions were assumed to result in light-
tailed (rapidly decaying tail distribution) transmission delays.
The conventional belief was that the number of retransmissions
follows a geometric distribution [1], which is true when the
errors are independent of the size of the transmitting packet.
However, recent work [2]–[4] shows that when the probability
of packet errors is an increasing function of the packet length,
which is often true in communication networks, the number
of retransmissions do not follow a geometric distribution.
The rough intuition is as follows: If we use the traditional
retransmission schemes that repeatedly send a packet until it

This material is based upon work supported in part by, the U.S. Army
Research Laboratory and the U. S. Army Research Office under grant number
W911NF-08-1-0238 and by the National Science Foundation through grants
CNS-1065136 and CNS-1012700.

is received successfully, the expected transmission duration
of sending an N−bit packet over an i.i.d. binary erasure
channel grows on the order O(1/pN ), where 1 − p is the
per-bit erasure probability. Since the expected transmission
duration grows exponentially in the number of bits N, even
with light-tailed packet sizes, where the distribution of N
decreases at least exponentially fast, the resultant delay is
still heavy-tailed. In fact, it has been shown in [2]–[4], under
the assumption that the packet size distribution has infinite
support, that all retransmission-based protocols could cause
heavy-tailed behavior (specifically, power law transmission
durations) and possibly even zero throughput, even when
the data units and channel characteristics are light-tailed.
Following this observation, there have been several efforts
to identify transmission schemes to mitigate the power law
delays. In [5], the authors show that independent or bounded
fragmentation guarantees light-tailed completion time as long
as the packet/file size is light-tailed. This scheme requires ad-
ditional overhead for each packet transmission, hence resulting
in significant throughput loss. In [6], the authors consider the
use of fixed-rate coding techniques to transmit information in
order to mitigate delays. Their study reveals a complicated
relationship between the coding complexity and the trans-
mission delay/throughput. They characterize the possibility of
transmission delay following a power law with index less
than one when the coding complexity is high and when the
receiver does not have a memory of successfully received
bits. In [7], the authors investigate the use of multi-path
transmission schemes such as redundant, and split transmission
techniques. They find that the power-law transmission delay
phenomenon still persists with multi-path transmission under
the assumption that the packet size distribution has infinite
support. However, in practice, packet sizes are bounded by the
maximum transmission unit (MTU). This fact motivates us to
more carefully investigate the impact that retransmissions have
on network performance by allowing the packet sizes to have
finite support.

We consider a system where the channel dynamics are mod-
eled by an on-off process {(Ai, Ui)}i≥1 where Ai corresponds
to the time when the channel is available and Ui the time
period when the channel is not available, as in [8]. Let L be
the random variable that denotes the length of a generic packet.
At the beginning of each available period Ai, we attempt to
transmit the packet. If L < Ai, we say that the transmission
is successful; otherwise, we wait until the beginning of the
next available period Ai+1 and retransmit the packet from the
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beginning. As mentioned earlier, we focus on the situation
of practical interest, i.e., when the distribution of L has
finite support on the interval [0, b]. We study the asymptotic
properties of the distributions of the total transmission time
and number of retransmissions. Our main contributions in this
paper can be summarized as follows:

(I) Under a general polynomial relationship between the
packet size distribution and channel available period
distribution (this relationship provides a measure of
the quality of the channel), we show that, even when
the packet size has an upper limit, the transmission
duration distribution is characterized by a power law
main body. This power law behavior spans over a time
scale that is approximately equal to the average trans-
mission duration of the longest packet. Additionally,
we show that this distribution eventually becomes light-
tailed. We characterize the transition of the transmission
delay distribution from a power law main body to an
exponential tail. Thus, depending on the probabilities of
interest and the system parameters, the transmission de-
lays may experience heavy or light-tailed distributions.
More importantly, both the power law main body and
the exponential tail could dominate performance. When
this power law main body is significant, it could possibly
cause the channel throughput to be very close to zero
(as shown in Theorem 4), implying that some careful
re-examination and adjustment of system parameters are
needed. On the other hand, if the exponential tail is more
evident, this suggests that the system is operating in a
benign environment. Similar phenomenon of power law
up to a certain threshold followed by an exponential
decay has been observed for inter-contact time distribu-
tions between mobile devices [9].

(II) Using the afore-mentioned results, we study two cases
of interest. First, we investigate the system throughput
when the packet lengths have an upper limit b. Our
results show that under certain conditions the channel
throughput may be very close to zero for large b even
when the average packet size is very small. Next, we
study an M/M/∞ queue with server failures. When
active servers fail according to i.i.d. Poisson point
processes, we observe that the number of jobs in the
system exhibits long-range dependence. This effect can
be eliminated if job sizes are upper bounded. However,
we find that there may still be a strong autocorrelation
for the number of jobs in the system that spans over
a large time interval for bounded job sizes, implying
that the system may exhibit long-range dependence over
operating regions of interest.

These theoretical findings provide a new understanding on
the controversy in empirical measurements why heavy tails
are observed for certain measurements and light tails for
others (e.g., wireless networks). The discovery of heavy-tailed
statistical characteristics of traffic streams in modern computer
networks [10] led to an extensive amount of research on the
issue of power laws in information networks.

For example, it was suggested in [11] that the transmission

delay distribution in IEEE 802.11 wireless ad hoc networks
can be expressed as a power law. There are also different
views advocating other distributions as providing the correct
description of the system. For example, the empirical measure-
ment in [12] shows that link delays over the wireless mesh
network are fitted by either gamma or logistic distributions.
These seemingly contradicting results have been addressed in
[13], which suggests that (1) some claims on the heavy/light
tails may not be legitimate due to the lack of sufficient
measurements for the hypothesis testing, and (2) engineers
should focus on the behavior of a distribution’s “waist” that
refers to the portion for which there are enough data to
summarize the distributional information. Our results provide
the mathematical basis for understanding these competing
claims and show that indeed depending on the operating
points and parameters of interest, either heavy or light tail
phenomenon may dominate performance.

Also, from an engineering perspective, our results further
emphasize the insight developed in [8] that retransmissions
may significantly amplify the packet size variability to much
larger variability in transmission delays. More precisely, if
there is a polynomial functional relationship between the
distributions of the channel ON periods and the packet size, the
transmission duration is very close to a power law distribution
over the time scale of order 1/P[A > b]. Thus, even for
packet lengths with small MTUs, the small variability in
the packet size can still be amplified by the retransmission
based protocols, causing potentially poor performance. This
observation could be a possible explanation for the empirical
measurements in [14], which claims that the utilization of the
802.11 protocol is lower due to retransmissions.

Our results also provide insights in designing control al-
gorithms. For example, in physical layer, power control can
change the rate at which the packet is transmitted. In this
sense, power control can be thought as a way to change the
relationship between the channel dynamics and the units in
which packets should be transmitted in order to achieve the
best network performance.

II. MODEL DESCRIPTION AND RELATED WORK

In this section, we formally describe our model and provide
necessary definitions and notation. Some related results are
also presented in this part.

Throughout this paper, a positive function f is called regu-
larly varying (at infinity) with index ρ if lim

x→∞
f(λx)/f(x) =

λρ for all λ > 0. It is called slowly varying if ρ = 0 [15]. For
any two real functions f(t) and g(t) we use f(t) ∼ g(t) as
t → ∞ to denote lim

t→∞
f(t)/g(t) = 1. Similarly, we say that

f(t) & g(t) as t → ∞ if lim inf
t→∞

f(t)/g(t) ≥ 1; f(t) . g(t)

has a complementary definition. We use “ d=” and “
d
≤(

d
≥)” to

denote equal in distribution and less (greater) than or equal
in distribution, respectively. We use ∨ to denote max, i.e.,
x ∨ y ≡ max{x, y}.

In this paper, we adopt the retransmission model that was
proposed in [8]. The channel dynamics are modeled as an
on-off process {(Ai, Ui)}i≥1 that alternates between available
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Ai and unavailable Ui periods, respectively. Let L denote
the random length of a generic packet. At the beginning of
each time period Ai when the channel becomes available,
we attempt to transmit the packet. If L < Ai, we say that
the transmission is successful; otherwise, we wait until the
beginning of the next available period Ai+1 and retransmit
the packet from the beginning. This process continues until
the packet is successfully transmitted over the channel. In this
paper, we assume that {Ui}i≥1 and {Ai}i≥1 are two mutually
independent sequences of i.i.d. random variables with Ui

d
= U ,

Ai
d
= A and U independent of A. A sketch of the model

depicting the system is drawn in Figure 1; see also in [8]. As

Fig. 1. Packets sent over channels with failures

mentioned earlier, unlike [8], we allow the packet length L to
take values on finite interval [0, b], b > 0. Our goal will be to
study the behavior of the number of retransmissions N(b) and
the total transmission delay T (b) as b scales with the number
of retransmissions.

Definition 1: The total number of (re)transmissions for a
packet of length L is defined as

N(b) , inf{n : An > L},

and, the total transmission time for the packet is defined as

T (b) ,
N(b)−1∑
i=1

(Ai + Ui) + L. (1)

First, we state a condition on the moment generating function
of U that will be used in the characterization the total
transmission time T (b).

Condition 1: E
[
eθU
]
<∞ for all θ > 0.

This condition implies that U has a light tailed distribution.
Note that this assumption makes the problem non-trivial.
Because if U were heavy tailed, it would not at all be
surprising that the transmission delay would be heavy tailed.

Next, we briefly discuss the results from [8] that investigate
the heavy-tailed (specifically, power law) delay behavior of
retransmission based protocols. When the distribution function
of L has an infinite support (b = ∞), it has been shown
in Lemma 1 of [8] and Proposition 1.2 of [4] that both the
transmission time and the number of transmissions follow
subexponential distributions, as given by the following result.

Proposition 1 (from [8]): If P[L > x] > 0 for all x ≥ 0,
then both N(∞) and T (∞) are subexponential in the follow-
ing sense that, for any ε > 0, as n→∞ and t→∞,

eεnP[N(∞) > n]→∞, eεtP[T (∞) > t]→∞.

This class of heavy-tailed distributions has a rich structure,
including power laws, heavy-tailed Weibull distributions and

nearly exponential distributions. For a detailed analysis of
this class of distributions induced by retransmissions see [2].
Since power law distributions are closely related to long
range dependency (see Section V-B) and channel stability (see
Section V-A), we focus on power law delays. Below we quote
Theorem 2 of [8] as Proposition 2 (see also Theorem 2.5 in
[2] and Theorem 2.2 in [4]), which show that both N(∞) and
T (∞) can follow power law distributions.

Proposition 2: If there exists α > 0 such that

lim
x→∞

logP[L > x]

logP[A > x]
= α,

then,

lim
n→∞

logP[N(∞) > n]

log n
= −α.

Additionally, if E
[
eθ(A+U)

]
<∞ for some θ > 0, then,

lim
t→∞

logP[T (∞) > t]

log t
= −α. (2)

Remark 1: In order to prove Equation (2), we only need a
weaker condition E

[
U (α∨1)+θ

]
<∞ and E

[
A1+θ

]
<∞ for

some θ > 0. See [2] for more details.

III. TRANSITION FROM HEAVY TO LIGHT TAILS

In this section, we present preliminary investigations and a
motivating example when the packet sizes have finite sup-
port. When b is finite, unlike the case of infinite support
that can cause subexponential delays, both the number of
retransmissions N(b) and the total transmission time T (b)
have exponential tails, as shown in the following proposition.
When Ui ≡ 0 and A has a density function, this case has been
studied in Corollary 3.1 of [4].

Proposition 3: Under Condition 1, for b < ∞ with 0 <
P[A ≤ b] < 1, if P[A + U > x|A ≤ b]eγ

∗x is nonlattice and
directly Riemann integrable with γ = γ∗ being the solution
of
∫∞

0
eγsdP[A+ U ≤ s|A ≤ b] = 1/P[A ≤ b], then

P[N(b) > n] ≤ (P[A ≤ b])n , P[T (b) > t] . Ce−γ
∗t,

where

C =
eγ

∗bP[A > b]P[A ≤ b]−1

γ∗
∫∞

0
seγ∗sdP [A+ U ≤ s|A ≤ b]

.

Proof: See Appendix.
Remark 2: Note that if the packet size has bounded support,

the number of retransmissions being geometrically distributed
immediately follows. The other conditions in Proposition 3
are needed to characterize the tail of the transmission delay
distribution.

Heavy tails and light tails have very different statistical
characteristics. The preceding cases represent the two extremes
that feature heavy tails and light tails, corresponding to a fixed
finite and infinite b, respectively. It motivates us to study the
transition from heavy tails to light tails when b scales such that
it is neither a fixed finite constant nor equal to infinity. To that
end, we introduce a hidden random variable L∗ that has an
infinite support, and the packet size L satisfies the following



4

condition

P[L > x] =

{
P[L∗ > x|L∗ ≤ b] x ≤ b
0 x > b,

(3)

where P[L∗ ≤ b] > 0. Clearly, when b changes, the distribu-
tion of L changes accordingly with respect to b. Thus, we also
use the notation Lb ≡ L for increased clarity when necessary.

We use the following numerical evaluation to further illus-
trate the effect of transition from the power law main body to
the light tail for the transmission delay distribution.

Example 1: This numerical example shows that the delay
distribution has a power law main body and an exponential
tail when L takes values on a finite interval [0, b]. Assume that
Ui = 0 and both L∗ and A follow exponential distributions
with rate 0.8 and 1.0, respectively. We plot P[T (b) > t] on the
log-log scale by changing b from 4 to 10. It is clear from the
figure that the support of the power law main body increases
very quickly with respect to b: a small increment of b from
4 to 10 results in a big expansion of the power law support
from nearly 10 to 1000, which is a dramatic amplification.
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Fig. 2. The transmission delay distribution. A small increase in the maximum
packet length, b, results in a large expansion of the power law main body.

We use the following notations to denote the complementary
cumulative distribution functions for A and L∗, respectively,

Ḡ(x) , P[A > x]

and
F̄ (x) , P[L∗ > x].

Lemma 1: If 0 < b1 ≤ b2, then N(b1)
d
≤ N(b2) and

T (b1)
d
≤ T (b2).

Remark 3: This result is supported by the preceding exam-
ple. As easily seen from Figure 2, P[T (b) > t] is monotoni-
cally increasing as b increases.

Proof: First, we want to show that Lb1
d
≤ Lb2 . Recalling

(3), it is sufficient to show that, for x ≥ 0,

P[x < L∗ ≤ b1]

P[L∗ ≤ b1]
≤ P[x < L∗ ≤ b2]

P[L∗ ≤ b2]
.

It is easy to verify the preceding inequality by checking

(P[L∗ ≤ b1]− P[L∗ ≤ x])P[L∗ ≤ b2] ≤
(P[L∗ ≤ b2]− P[L∗ ≤ x])P[L∗ ≤ b1].

Now, by Definition 1, both N(b) and T (b) is monotonically

increasing in L. Therefore, we prove that N(b1)
d
≤ N(b2) and

T (b1)
d
≤ T (b2).

IV. MAIN RESULTS

This section presents our main results. Here, we assume
that F̄ (x) is a continuous function with support on [0,∞);
note that L has a finite support on [0, b] by Equation (3).
We first state a condition that characterizes the functional
relationship between the distributions of packet sizes and
channel available periods.

Condition 2: lim
x→∞

logP[L∗ > x]

logP[A > x]
= α.

We now present our main results that characterize the
transition of the distributions of N(b) and T (b) from power
law main bodies to exponential tails. Note that

(
Ḡ(b)

)−1
=

(P[A > b])
−1 is the expected number of transmissions for a

packet of size b.
Theorem 1: If Condition 2 holds for some α > 0, then, for

fixed 0 < η < 1, and ε > 0, there exist n0 and b0 such that
for any b > b0, we have, for n0 < n <

(
Ḡ(b)

)−η
,

1− ε < logP [N (b) > n]

−α log n
< 1 + ε, (4)

In addition, if Ḡ(x) is left-continuous at

b∗ , sup {x : P[L > x] > 0} > 0,

we have,

lim
n→∞

logP [N (b) > n]

n
= log

(
1− Ḡ(b∗)

)
. (5)

Remark 4: This result shows that when b is large, albeit
finite, the distributions of N(b) and T (b) consist of two
different regions: a power law main body, and an exponential
tail. Equation (4) implies that P[N(b) > n] is approximately
a power law distribution with index α when n is smaller than(
Ḡ(b)

)−1
, which is the average number of retransmissions of

the largest packet. Equation (5) suggests an exponential tail
distribution when n is large.

Proof: See Appendix.
While the detailed proof is given in the Appendix, we

provide a brief outline here. The upper bound in (4) follows
from Lemma 1, and Proposition 2. Regarding the lower bound,
we use the relation P(N(b) > n) = E[(1−Ḡ(L))n] along with
the Condition 2, and n < (Ḡ(b))−η to obtain a tight lower
bound on P[N(b) > n] of the order 1/nα−ε for any small
ε > 0. This characterizes the region of interest that is well
approximated by power law distributions for the number of
retransmissions. The bounds in (5) are also obtained by using
the relation P(N(b) > n) = E[(1−Ḡ(L))n]. The upper bound
uses the fact that P[L ≤ b∗] = 1. The lower bound is obtained
by truncating the expectation in the interval [b∗ − ε, b∗] and
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by using the fact that the P[b∗ − ε < L < b∗] > 0. Continuity
condition on Ḡ(x) allows us to obtain the result in (5) by
letting ε→ 0.

Theorem 2: If Condition 2 holds for some α > 0 along with
E
[
eθ(A+U)

]
<∞ for some θ > 0, then, for fixed 0 < η < 1,

and ε > 0, there exist t0 and b0 such that for any b > b0, we
have, for t0 < t <

(
Ḡ(b)

)−η
,

1− ε < logP [T (b) > t]

−α log t
< 1 + ε. (6)

In addition, if Ḡ(x) is left-continuous at b∗ =
sup {x : P[L > x] > 0} > 0, we have,

lim
t→∞

logP [T (b) > t]

t
= −γ∗, (7)

where γ = γ∗ is the solution of∫ ∞
0

eγsdP [A+ U ≤ s|A ≤ b∗] = 1/(1− Ḡ(b∗)). (8)

Proof: See Appendix.
Under a more restrictive condition, we can obtain the

following more precise result that characterizes the exact
asymptote for the power law main body.

Theorem 3: If

P[L∗ > x]−1 ∼ Φ
(
P[A > x]−1

)
, (9)

where Φ(·) is regularly varying with index α > 0, then, for
ε > 0, there exist ζ, n0, t0 > 0 and b0 such that for any b > b0,
we have

sup
n0<n<ζ/Ḡ(b)

∣∣∣∣P [N (b) > n] Φ(n)

Γ(α+ 1)
− 1

∣∣∣∣ < ε, (10)

where Γ(·) is the gamma function. Additionally, if
E
[
eθ(A+U)

]
<∞ for some θ > 0, then,

sup
t0<t<ζ/Ḡ(b)

∣∣∣∣P [T (b) > t] Φ(t)

Γ(α+ 1)
− 1

∣∣∣∣ < ε. (11)

Proof: See Appendix.
Remark 5: The preceding results imply Equations (4) and

(6), and characterize the exact asymptote for the power law
main body.

The proof of Theorem 3 combines the proof of Theorem
2.7 in [2] and the same techniques used in proving Theorems
1 and 2 above. Given the characterization of distribution of L∗

in terms of A as in (9), we make use of the Characterization
Theorem of regular variation and the uniform convergence of
slowly varying functions to obtain uniform bounds in (10).
Next, we state a lemma that bounds the distributions of
N(b), T (b) when the number of retransmissions and trans-
mission time are between the power law main body and the
exponential tail.

Lemma 2: If Condition (2) holds, then for any fixed η2 >
η1 > 1 and 0 < ε < η1, there exists b0, such that for all
b > b0, and for

(
Ḡ(b)

)−η1
< n <

(
Ḡ(b)

)−η2
,

−n1− 1
η2+ε ≤ logP [N (b) > n] ≤ −n1− 1

η1−ε (12)

In addition, if E
[
eθ(A+U)

]
< ∞ for some θ > 0, then for

(
Ḡ(b)

)−η1
< t <

(
Ḡ(b)

)−η2
, we have

−t1−
1

η2+ε ≤ logP [T (b) > t] ≤ −t1−
1

η1−ε . (13)

Proof: See Appendix.
Loosely speaking, Lemma 2 characterizes the transition

between the power law main body and the exponential tail.

A. Numerical Evaluation

We next present numerical results to support our results in
this section. First, we verify the support region of the power
law main body that is characterized by Theorem 2.
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Fig. 3. Power law main body is close to the asymptote computed using
Theorem 3 on the interval corresponding to the average transmission time for
a packet of size b.

Under the setting of Example 1, we plot the distribution of
the total transmission delay T (b) for b = 7 in Figure 3. The
dotted line represents the asymptote Γ(1.0/0.8)t−1.0/0.8 that
is computed using (11). The dashed vertical line corresponds
to the average transmission time for a packet of size b = 7 over
the channel, i.e., E[A]/Ḡ(b) = e7 = 1.096 × 103. It is easy
to see a power law main body that is close to the computed
asymptote on the interval [0, 1.096× 103].

Next, we investigate the exponential tail under the setting
of Example 1. We plot the distribution of the number of
retransmissions N(b) for b = 3 in Figure 4. It can be
observed that, after taking logarithm with base 10, the tail
distribution is asymptotically a straight line. The slope of
the line is −0.022, which matches our theoretical result
log10

(
1− Ḡ(b)

)
= log10

(
1− e−3

)
that is computed by

equation (5).
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Fig. 4. Exponential tail for the distribution of the number of retransmissions.
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V. RELATED MODELS

In this section, using the results obtained in Section IV, we
study two related models that further highlight the engineering
implications. In Section V-A, we show that, even when the
packet has a small mean with a bound that does not depend
on its upper limit b, due to the power law main body caused
by the polynomial functional relationship between the packet
size variability and channel dynamics, the channel throughput
may still be very close to zero. Therefore, both choosing an
appropriate upper limit b and designing the packet variability
are important for the system performance. In Section V-B,
we investigate the autocorrelation function of the number of
jobs in a M/M/∞ queue with server failures. If a server
failure occurs during the processing of a job, this job has
to restart from the beginning on the same server. We show
that, under the condition that the job sizes follow exponential
distribution (with infinite support), this model can cause long
range dependence. Introducing an upper limit to all job sizes
can eliminate the long range dependence; however, the strong
dependence can span over a large interval, which implies a
performance very close to long range dependence.

A. Throughput of the on-off channel

Consider the same on-off channel model as in Section II.
Now, suppose that the source has an infinite number of
backlogged packets to be sent. Let {Li}i≥1 be the i.i.d.
sequence of packet sizes. Define {Ti} to be the duration for
transmitting packet Li. Note that the channel is still available
immediately after the successful transmission of packet Li,
thus we can start transmitting Li+1 without waiting for the
next available period. Due to this effect, the durations {Ti}
are not independent random variables. We are interested in
studying the throughput Λn(b) of this system for the first n
packets,

Λn(b) ,

∑n
i=1 Li∑n
i=1 Ti

.

Since it is not clear whether Λn(b) converges to a limit as n
goes to infinity, we use lim to denote both lim sup and lim inf .

Theorem 4: If Condition 2 holds for some 0 < α < 1 and
E[eθ(A+U)] <∞ for some θ > 0, then, the throughput of the
on-off channel Λn(b) satisfies, as b→∞,

limn→∞
log Λn(b)

log Ḡ(b)
∼ (1− α). (14)

Proof: See Appendix.
Remark 6: From the preceding result, if both L∗ and A fol-

lows exponential distributions with rate µ and ν, respectively,
then, as the upper limit b goes to∞, the throughput vanishes to
zero roughly with speed e−(ν−µ)b for ν > µ. Figure 5 shows
this exponential rate of decay of throughput for the on-off
channel with µ = 0.5 and ν = 1. Note that the mean packet
size E[L] is bounded by a constant E[L∗] = 1/µ that does not
depend on b. This suggests that some special care needs to be
taken when engineering retransmission based protocols: both
the maximum packet size and the variability of the packet size
can impact the throughput.
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Fig. 5. Throughput of the on-off channel for a finite b. L∗ and A follow
exponential distributions of rate µ = 0.5 and ν = 1.

B. Long-range dependence in M/M/∞ queues with failures

Consider a M/M/∞ queue with Poisson arrival rate λ. Let
L∗ be an exponential random variable with rate µ. Suppose
that all the active servers fail independently according to
Poisson point processes with the same rate ν. Immediately
after a server fails in the middle of processing a job that runs
on this server, this job has to restart on the same server from
the beginning. Let Ti denote the processing time for job i. Let
M(t) be the number of jobs in the system at time t. Theorem 5
shows that M(t) may be long range dependent if all the job
sizes {Li}i>−∞ follow an exponential distribution with rate
µ; Li

d
= L∗. In the rest of this section, we assume that the

system has reached stationarity.
Theorem 5: If 1 < µ/ν < 2, then M(t) is long range

dependent in the sense that∫ ∞
0

Cov(M(t),M(t+ s))ds =∞.

Remark 7: If µ/ν ≤ 1, then Var[M(t)] = ∞, and
Cov(M(t),M(t+ s)) is not defined for this case. If µ/ν = 2,
the result in this theorem also holds, but we omit the proof.

Proof: By the well-known result on the autocorrelation
function of the number of jobs in a M/G/∞ queue (e.g., see
[16]), we obtain

Cov(M(t),M(t+ s)) = λ

∫ ∞
s

P[T1 > x]dx.

Proposition 2 implies that, for 0 < ε < 2− µ/ν,

P[T1 > x] &
1

xµ/ν+ε
,

as x→∞. Therefore, we obtain, as s→∞,

Cov(M(t),M(t+ s)) &
λ

sµ/ν−1+ε
,

which, using the fact that 0 < µ/ν−1 + ε < 1, completes our
proof.

This long range dependence can be eliminated by restricting
the support of the job size distribution. In the following,
similar to Section IV, we assume that all the i.i.d. job
sizes {Li} follow a truncated exponential distribution with
P[L1 ≥ x] = P[L∗ ≥ x|L∗ ≤ b] for b > 0. We show in
Theorem 6 that the integration of the autocorrelation function
may still be very large, indicating a performance close to long-
range dependence.
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Theorem 6: If 1 < µ/ν < 2 and job sizes have a finite
support on [0, b], then, as b→∞,

log

∫ ∞
0

Cov(M(t),M(t+ s))ds ∼ (2ν − µ)b,

which goes to infinity linearly as b→∞.
Proof: See Appendix.

To prove the asymptotic relationship in Theorem 6, we show
that (2ν − µ)b is both an asymptotic upper bound as well as
a lower bound to the logarithm of the covariance. To show
the lower bound, we make use of the lower bound in (6).
To prove the upper bound, we appeal to the upper bound in
Proposition 2 and Lemma 2.

VI. CONCLUSION

In practical communication protocols, all packets are
bounded by an upper limit, say, the maximum transmission
unit (MTU). Our results show that, for retransmission mecha-
nism, this upper limit has an important influence on the system
performance.

We show that the retransmission mechanism could enlarge
transmission durations in a highly non-linear manner. Under a
general polynomial relationship between the statistical char-
acteristics of channel dynamics and packet size variability,
i.e., logP[L > x] ≈ α logP[A1 > x], x ≤ b, where b is the
maximum packet length, the time for a successful transmission
approximately follows a power law over the time scale of
order 1/P[A > b], i.e., the average transmission time of the
longest packet. Thus, even for packets with an upper limit,
a small variability in the packet size distribution can still
be amplified dramatically by retransmission based protocols,
possibly causing very poor performance if α is small, e.g.,
α < 1.

These effects could greatly impact the system performance
in many engineering applications. We analyzed the throughput
of on-off channels with retransmissions, where we showed
that even when packet sizes have small means and bounded
support the variability in their sizes can greatly impact system
performance. Specifically, if L (truncated at b) and A follow
exponential distributions of rates µ and ν respectively with
ν > µ, then as b → ∞, the throughput vanishes to zero at
a speed proportional to e−(ν−µ)b. Next, we considered the
distribution of the number of jobs in an M/M/∞ queue
with server failures. Here we showed that retransmissions can
cause long-range dependence and quantified the impact of the
maximum job sizes on the long-range dependence.

VII. APPENDIX

Since F̄ (x) is a continuous function on [0,∞), we can
define its inverse function F̄←(x) , inf{y : F̄ (y) < x}.

A. Proof of Proposition 3

First we prove the result for N(b). Since the sequence
{Ai} is i.i.d., upper bounding the packet size L by b yields
P[N(b) > n] ≤ P[A ≤ b]n.

Next, we study T (b). Note that Condition 1 ensures
the existence of γ∗, since the moment generating function

∫∞
0
eγsdP[A + U ≤ s|A ≤ b] is finite, continuous, and

monotonically increasing for all γ > 0 [17]. For a random
variable N̄ that is independent of {Ai, Ui} with P

[
N̄ > n

]
=

P[A ≤ b]n, n = 0, 1, 2, · · · (thus N̄ ≥ 1), we have

T (b) ≤st
N̄−1∑
i=1

(Āi + Ui) + b, (15)

where Āi, i ≥ 1 are i.i.d. and independent of N̄ , {Ui} with
P
[
Āi > t

]
= P[A > t|A ≤ b]. Noting that the first term on

the righthand side of (15) is a geometric sum of i.i.d. random
variables, we derive the following defective renewal equation,
for t > 0,

P

N̄−1∑
i=1

(Āi + Ui) > t

 = P
[
N̄ > 1, Ā1 + U1 > t

]

+ P

N̄ > 1, Ā1 + U1 ≤ t,
N̄−1∑
i=1

(Āi + Ui) > t


= P[A ≤ b]P[Ā1 + U1 > t] + P[A ≤ b]

×
∫ t

0

P

N̄−1∑
i=2

Āi + Ui > t− u

 dP [Ā1 + U1 ≤ u
]
. (16)

Applying Theorem 7.1 of Chapter 5 in [18], we derive

lim
t→∞

eγ
∗(t−b)P

N̄−1∑
i=1

(Āi + Ui) + b > t


=

∫∞
0
eγ

∗sP [A+ U > s|A ≤ b] ds∫∞
0
seγ∗sdP [A+ U ≤ s|A ≤ b]

,

which, using
∫∞

0
eγ

∗sdP[A+ U ≤ s|A ≤ b] = 1/P[A ≤ b] to
compute the numerator, completes the proof. n

B. Proof of Theorem 1
Notice that the number of retransmissions is geometrically

distributed given the unit size L,

P[N(b) > n | L] = (1− Ḡ(L))n,

and therefore,

P[N(b) > n] = E[(1− Ḡ(L))n]. (17)

I) First, we prove (4). Using Lemma 1 and Proposition 2,
we obtain the upper bound

lim
n→∞

logP[N (b) > n]

log n
≤ lim
n→∞

logP[N (∞) > n]

log n
= −α,

which implies that, for ε > 0, there exists n0 such that

inf
n>n0

logP [N (b) > n]

−α log n
> 1− ε. (18)

Next, we derive a lower bound. Condition 2 implies that for
any 0 < δ < 1/α, there exists xδ , such that for all x > xδ ,
we have

F̄ (x)
1
α+δ ≤ Ḡ(x) ≤ F̄ (x)

1
α−δ. (19)

When b > xδ , the condition n <
(
Ḡ(b)

)−η
implies n <
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(
F̄ (b)

)−( 1
α+δ)η . Let ζ , (1/α+ δ) η, and we obtain b >

F̄←(n−1/ζ). Thus, there exists b0 > xδ such that for all b >
b0,

E[(1− Ḡ(L))n] = E
[
(1− Ḡ(L∗))n|L∗ ≤ b

]
≥ 1

P[L∗ ≤ b]
E
[(

1− Ḡ(L∗)
)n

1(xδ < L∗ < b)
]

≥ E
[ (

1− F̄ (L∗)
1
α−δ

)n
1
(
F̄ (b) < F̄ (L∗) < F̄ (xδ)

) ]
≥ E

[(
1− F̄ (L∗)

1
α−δ

)n
1
(
F̄ (b) < F̄ (L∗)

)]
−
(

1− F̄ (xδ)
1
α−δ

)n
.

Since F̄ (x) is continuous, F̄ (L∗) is a uniform random
variable between 0 and 1, the preceding inequality implies

E[(1− Ḡ(L))n] ≥
∫ 1

F̄ (b)

(
1− u 1

α−δ
)n

du

−
(

1− F̄ (xδ)
1
α−δ

)n
,

which, letting u1/α−δ = v and noting F̄ (b) < n−1/ζ , yields

E[(1− Ḡ(L))n] ≥
∫ 1

0

(1− v)
n α

1− αδ
v

α
1−αδ−1dv

−
∫ n−1/ζ

0

(
1− u 1

α−δ
)n

du−
(

1− F̄ (xδ)
1
α−δ

)n
, P1 − P2 − P3. (20)

Recalling the property of Beta function, for fixed x,

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt ∼ Γ(x)y−x (21)

as y →∞, we obtain,

P1 ∼
αΓ(αδ)

1− αδ
n−αδ , αδ =

α

1− αδ
. (22)

We know that

P2 ≤
1

n1/ζ
, (23)

which, in conjunction with (20) and the fact that P3 is
exponentially bounded, implies that, for 0 < δ < 1/α − ζ,
i.e., 1/ζ > αδ , there exists n0 > 0 such that for n0 < n <(
Ḡ(b)

)−η
,

E[(1− Ḡ(L))n] ≥ (1− δ)
∫ 1

0

(1− v)
n α

1− αδ
v

α
1−αδ−1dv.

Using (22) and the preceding lower bound, we obtain, for any
fixed ε > 0, there exists n0 and b0, where

(
Ḡ(b0)

)−η
> n0,

such that for b > b0,

sup
n0<n<(Ḡ(b))

−η

logP [N (b) > n]

−α log n
< 1 + ε. (24)

Combining (18) and (24), we finish the proof of (4). In (23)
we simply upper bound P2 by F̄ (b). Using a tighter bound we
can prove the power law main body on a larger interval for n.

II) Next, we prove (5). Using P[L ≤ b∗] = 1 and (17) yields

P[N(b) > n] ≤ (1− Ḡ(b∗))n,

which proves the upper bound.
Next, we prove the lower bound. For ε > 0, note that

P[N(b) > n] ≥ E
[
(1− Ḡ(L)n1 (b∗ − ε < L < b∗)

]
≥ P[b∗ − ε < L < b∗](1− Ḡ(b∗ − ε))n.

The definition of b∗ implies P[b∗ − ε < L < b∗] > 0, and
therefore,

lim
n→∞

logP [N (b) > n]

n
≥ − log

(
1− Ḡ(b∗ − ε)

)
,

which, by passing ε → 0 and using the continuity, finishes
the proof of the lower bound. n

C. Proof of Theorem 2
First, we prove equation (6). Since the proof is based on

the same approach as in proving Theorem 3 in [8], here we
only discuss the proof of the upper bound.

For any δ > 0, we have

P[T (b) > t] = P

N(b)−1∑
i=1

(Ui +Ai) + L > t


≤ P

N(b)∑
i=1

(Ui +Ai) > t,N(b) ≤ t(1− δ)
E[U +A]


+ P

[
N(b) >

t(1− δ)
E[U +A]

]
+ P [L∗ > t|L∗ ≤ b]

, I1 + I2 + I3. (25)

For I1, let Xi , (Ui + Ai) − E[(Ui + Ai)] and ζ , (1 −
δ)/E[U +A]. Noting EeθX1 <∞ and EX1 = 0, we obtain

I1 ≤ P

 ∑
i≤t(1−δ)/E[U+A]

(Ui +Ai) > t

 = P

∑
i≤ζt

Xi > δt

 ,
which, by Chernoff bound, is bounded by he−ζt for h, ζ > 0.

Since I3 is upper bounded by 2P[L∗ > t] that is independent
of b for b large enough, the summation I1+I2+I3 is dominated
by I2, which implies the upper bound for (6). The lower bound
can be obtained by combining similar arguments as in the
upper bound and the proof in [8].

Next, we prove (7). We begin with the upper bound.
Recalling (1) and using Lemma 1, we upper bound the packet
size L by b∗ to obtain, almost surely,

T (b) ≤
N̄−1∑
i=1

(Āi + Ui) + b∗, (26)

where P
[
N̄ > n

]
=
(
1− Ḡ(b∗)

)n
, P
[
Āi > t

]
= P[A >

t|A ≤ b∗], {Āi} is a sequence of i.i.d. random variables
independent from {Ui} and N̄ is independent of {Āi, Ui}.
Using the same approach as in computing (16), we obtain the
upper bound.

Now, we prove the lower bound. For 0 < ε < b∗, observe

P[T (b) > t] ≥ P [T (b) > t, b∗ − ε < L < b∗]

≥ P [b∗ − ε < L < b∗]P

[
N−1∑
i=1

(Ai + Ui) + b∗ − ε > t

]
,
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where P [N > n] =
(
1− Ḡ(b∗ − ε)

)n
, P [Ai > t] = P[A >

t|A ≤ b∗ − ε], {Ai} is a sequence of i.i.d. random variables
independent from {Ui} and N is independent of {Ai, Ui}. By
the definition of b∗, we know P [b∗ − ε < L < b∗] > 0. Using
the same approach as in computing (16), we obtain

lim
t→∞

logP [T (b) > t]

t
≥ −γε, (27)

where γε is the solution of∫ ∞
0

eγsdP [A+ U ≤ s|A ≤ b∗ − ε] = 1/
(
1− Ḡ(b∗ − ε)

)
.

Passing ε → 0 and using the continuity, we finish the proof
of the lower bound. n

D. Proof of Theorem 3

First, we prove (10). Without loss of generality, we can
assume that Φ(x) is absolutely continuous and strictly mono-
tone since, by Proposition 1.5.8 of [15], one can always find
an absolutely continuous and strictly monotone function

Φ∗(x) = α

∫ x

x0

Φ(s)s−1ds, x ≥ x0, (28)

which, for large enough x0, for all x > x0, satisfies

F̄−1(x) ∼ Φ(Ḡ−1(x)) ∼ Φ∗(Ḡ−1(x)).

Therefore, as n→∞, we know P (N(∞) > n) ∼ Γ(α+
1)/Φ(n) (c.f. [2]). Now, using this and Lemma 1, we have
that, given any 0 < ε < 1, there exists an n0 such that for all
n ≥ n0,

P (N(b) > n)Φ(n)

Γ(α+ 1)
< 1 + ε.

Next, we prove the lower bound. Since Φ(x) is regularly
varying function, there exists x0 such that, the restriction
of Φ(x) to [x0,∞) has an inverse function Φ←(x). The
condition (9) implies that, for 0 < δ < 1, there exists xδ,
such that for all x > xδ,

(1− δ)F̄−1(x) ≤ Φ(Ḡ−1(x)) ≤ (1 + δ)F̄−1(x),

and thus by choosing b0 > xδ > x0, we have that for all
b > b0,

Φ←
(
(1− δ)F̄−1(b)

)
≤ Ḡ−1(b)

≤ Φ←
(
(1 + δ)F̄−1(b)

)
. (29)

For M > m > 0 and xn > xδ with
Φ←

(
(1− δ)F̄−1(xn)

)
= n/M, we obtain, for n ≥ n0 and

b ≥ b0,

P[N(b) > n] = E
[
(1− Ḡ(L∗))n|L∗ ≤ b

]
≥ E

[(
1− Ḡ(L∗)

)n
1(xn < L∗ < b)

]
≥ E

[(
1− 1

Φ←
(
(1− δ)F̄−1(L∗)

))n 1 (F̄ (L∗) < F̄ (xn)
) ]

− E
[
1
(
F̄ (L∗) ≤ F̄ (b)

)]
, P1 − P2.

For P1, we obtain, by letting z = n/Φ←
(
(1− δ)F̄−1(L∗)

)
,

P1Φ(n) ≥
∫ M

m

(
1− z

n

)n
(1− δ) Φ(n)

Φ(nz )

Φ′(nz )

Φ(nz )

n

z2
dz.

Since Φ(n) is a regularly varying function, by the Char-
acterisation theorem of regular variation and the uniform
convergence theorem of slowly varying functions, we obtain
uniformly for any 0 < δ < 1 and m ≤ z ≤ M ,
0 < m,M < ∞, that there exists an n1 such that for all
n > n1,

Φ(n)

Φ(nz )
≥ (1− δ)zα.

Also, owing to (28), Φ′(n/z)/Φ(n/z) = zα/n. In addition,

there exists n2 such that for all n > n2, (1− z/n)
n
> (1 −

δ)e−z . Hence, for all n > n0 = max{n1, n2},

P1Φ(n) ≥
∫ M

m

(1− δ)3αe−zzα−1dz.

The condition n < ζ/Ḡ(b), in conjunction with (29),
implies F̄ (b) < (1 + δ)/Φ(n/ζ). Therefore,

P2Φ(n) ≤ F̄ (b)Φ(n) ≤ (1 + δ)
Φ(n)

Φ(n/ζ)
. (30)

Since Φ(n) is regularly varying with α > 0, for any given
δ > 0, we can choose n0 large enough and ζ small enough
such that for all n > n0, P2Φ(n) < δ. In (30) we simply
upper bound P2 by F̄ (b), which is not tight. Using a tighter
upper bound we can prove the power law main body on a
larger interval for n.

Hence, using the fact
∫∞

0
αe−zzα−1dz = Γ(α+1), for any

0 < ε < 1, we can choose M large enough and m, ζ, δ small
enough, such that for b > b0 and n0 < n < ζ/Ḡ(b),

P (N(b) > n)Φ(n)

Γ(α+ 1)
> 1− ε.

The proof of (11) follows from (25) and (10). n

E. Proof of Lemma 2

We first show that, for any fixed η2 > η1 > 1 and
0 < ε < η1, there exists b0 such that for all b > b0, and
for
(
Ḡ(b)

)−η1
< n

(
Ḡ(b)

)−η2 ,

−n1− 1
η2+ε ≤ logP [N (b) > n] ≤ −n1− 1

η1−ε (31)

Condition 2 implies that for any 0 < δ < 1/α, there exists
xδ , such that for all x > xδ , we have

F̄ (x)
1
α+δ ≤ Ḡ(x) ≤ F̄ (x)

1
α−δ. (32)

Since F̄ (x) is eventually non-increasing, by equation (19), the
condition

(
Ḡ(b)

)−η1
< n <

(
Ḡ(b)

)−η2 implies that

F̄←
(
n−1/ζ2

)
< b < F̄←

(
n−1/ζ1

)
(33)

where ζ2 , (1/α + δ)η2 and ζ1 , (1/α − δ)η1. Choosing
0 < δ < (η1 − 1)/(αη1), we obtain ζ2 > ζ1 > 1/α. Let
V = F̄ (L∗).
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For the upper bound, by Lemma 1 and (33), we obtain,

P[N(b) > n] = E
[
(1− Ḡ(L∗))n|L∗ ≤ b

]
≤ 1

1− n−1/ζ2
E
[ (

1− Ḡ(L∗)
)n

1
(
xδ < L∗ ≤ F̄←

(
n−1/ζ1

)) ]
+

1

1− n−1/ζ2
(1− Ḡ(xδ))

n.

Therefore, there exists n0, such that for all n > n0, P[N(b) >
n] is upper bounded by

(1+δ)E

[(
1− V 1

α+δ
)n

1

(
1

n1/ζ1
< V < F̄ (xδ)

)]
+ (1 + δ)(1− Ḡ(xδ))

n

≤ (1 + δ)

(
1− 1

n1/(ζ1α)+δ/ζ1

)n
+ (1 + δ)(1− Ḡ(xδ))

n

≤ (1 + 2δ)e−n
1−1/(ζ1α)−δ/ζ1

,

which implies, there exists b0 large enough, such that for any
given η1 > 1, and 0 < ε < η1, for all b > b0 and n >(
Ḡ(b)

)−η1
,

logP [N (b) > n] ≤ −n1− 1
α(ζ1−ε) . (34)

Now, we can prove Equation (13) in a similar way to proving
Equation (6) by appealing to Equation (25). To prove the lower
bound, for 0 < ε < 1/α, we obtain

P[N(b) > n] = E
[
(1− Ḡ(L∗))n|L∗ ≤ b

]
≥ E

[ (
1− Ḡ(L∗)

)n
1
(
F̄←

(
n−1/ζ2

)
< L∗ < F̄←

(
n−1/ζ1

)) ]
≥ E

[(
1− V 1

α−ε
)n

1

(
1

n1/ζ1
< V <

1

n1/ζ2

)]

≥
(

1

n1/ζ2
− 1

n1/ζ1

)(
1− 1

n1/(αζ2)−ε/ζ2

)n
∼ 1

n1/ζ2
e−n

1−1/(αζ2)−ε/ζ2
,

which implies, for n > n0 with n0 large enough,

logP [N (b) > n] ≥ −n1− 1
α(ζ2+ε) . (35)

Combining (34), (35), we finish the proof of (12). We obtain
(13) in a similar way as in the proof of Theorem 2. n

F. Proof of Theorem 4

Since E[eθA] < ∞ for some θ > 0, we can always find a

random variable X and t0, δ > 0 with A
d
≤ X and

P[X > t] =

{
1 if t ≤ t0,
e−δ(t−t0) if t > t0.

(36)

It can be checked that, P[X > t+s] ≤ P[X > t]P[X > s] for
any t, s ≥ 0. Therefore, for t ≥ 0 and any positive random
variable Y that is independent of X with P[X > Y ] > 0, we

obtain
P [X > Y + t|X > Y ] ≤ P[X > t]. (37)

Denote by Ψ(i), i ≥ 1 the index of the channel available
period within which Li succeeds in transmission. Immediately
after the successful transmission of the packet Li, we denote
by {τi} the remaining time and by {σi} the elapsed time,
respectively, within the available period AΨ(i).
First, we prove the upper bound using the coupling argument.
Using (36), we can construct in the same probability space an
i.i.d. sequence {X(1)

i }i≥1 with X(1)
i ≥ Ai and X(1)

i
d
= X for

all i ≥ 1. Define τ̄i = X
(1)
Ψ(i) − σi; obviously, τ̄i ≥ τi. For a

successful transmission with Li = σi, we obtain, by (37),

P[τi > t|Li = σi] ≤ P[τ̄i > t|Li = σi]

= P[X
(1)
1 > Li + t|X(1)

1 > Li] ≤ P[X > t]. (38)

Now, we will construct a new system where we always have
Li = σi, and thus P[τi > t|Li = σi] = P[τi > t]. We continue
to use Ψ(i), i ≥ 1 as the index of the channel available
period within which Li succeeds in transmission in the newly
constructed system. At the beginning of A1, we replace A1 by
X

(1)
1 and start transmitting L1. Then, immediately after each

successful transmission, say, for packet Li in the available
period AΨ(i), in view of (38), we can construct a new available

period by replacing τi with X
(2)
i , where X

(2)
i

d
= X and

X
(2)
i ≥ τi. Note that in this construction we change AΨ(i) for

all i and other available periods are the same as the original
ones. Then, let the system continue its operation by following
this construction. Noting that X has a constant hazard rate
δ if X ≥ t0, the random variable X

(2)
i is independent of

all the random variables that appear before X(2)
i is generated

in this new system. Denote by T i, i ≥ 1 the transmission
duration for packet Li in this new system excluding the
time that this packet spends in the constructed interval X(2)

i

and the unavailable period UΨ(i) that immediately follows
X

(2)
i ; clearly

∑n
i=1 T i ≤

∑n
i=1 Ti for all n. In addition,

this construction implies that {T i}i≥1 is an i.i.d. sequence. If
X

(1)
1 > L1, the first transmission in the available period X(1)

1

(replacing A1) succeeds, and thus T 1 = 0. If X(1)
1 ≤ L1,

since the first transmission fails and we need to wait until the
beginning of the second available period A2 to retransmit L1,
T 1

d
= T1, where T1 is the transmission time of the first packet

in the original system. Hence, we obtain T i
d
= T11(L1 > X),

where X is independent of L1 and {Ai, Ui}i≥1.
Therefore, as n → ∞, we obtain, using the law of large
numbers,

Λn(b) ≤
∑n
i=1 Li∑n
i=1 T i

=

∑n
i=1 Li
n

n∑n
i=1 T i

→ E[L]

E[T 1]
. (39)

Now, we need to compute, for t > 0,

P[T 1 > t] = P[T1 > t, L1 > X].

Using the same xε as in (19), we obtain, by the independence
of L1 and X ,

P[T1 > t, L1 > X] ≥ P[T1 > t, L1 > X,L1 > xε]
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So, P[T1 > t, L1 > X] ≥ P[T1 > t, L1 > xε, X < xε]

= P[T1 > t, L1 > xε]P[X < xε],
(40)

where, choosing xε large enough, we can always make P[X <
xε] > 0. From the proof of Theorem 2, we know that, for any
0 < ε < 1, there exist t0 and b0 such that for b > b0 and
t0 < t < Ḡ(b)−(1−ε),

P[T1 > t, L1 > xε] >
1

t(1+ε)α
,

which, by (40), implies,

logE[T 1] ≥ log

∫ Ḡ(b)−(1−ε)

t0

P[X < xε]

t(1+ε)α
dt

∼ −(1− ε)(1− (1 + ε)α) log Ḡ(b), (41)

as b→∞. Using (41), (39), and passing ε→ 0, we prove, as
b→∞,

lim sup
n→∞

log Λn(b)

log Ḡ(b)
. 1− α.

Next, we prove the lower bound. In each available period
AΨ(i), i ≥ 1 that contains a successful transmission, we
postpone the transmission of the new packet Li+1 until the
beginning of the next available period AΨ(i)+1. It is easy
to see that, this construction increases the total transmission
time, and also the durations for transmitting Li, i ≥ 1 are
i.i.d. random variables. Thus, the law of large numbers can
be applied. Based on similar arguments in deriving the upper
bound, we can prove, as b→∞,

lim inf
n→∞

log Λn(b)

log Ḡ(b)
& 1− α.

Combining the lower and upper bounds, we complete the
proof. n

G. Proof of Theorem 6

Let Ti(b) be the processing time for job i. For α = µ/ν
and Ḡ(b) = e−νb, we obtain, by Theorem 2, that for any
0 < ε < 1, there exist t0 and b0 such that for any b > b0 and
t0 < t <

(
Ḡ(b)

)−(1−ε)
,

P[T1(b) > t] >
1

t(1+ε)α
.

Using Theorem 5,∫ ∞
0

Cov(M(t),M(t+ s)) = λ

∫ ∞
0

∫ ∞
s

P[T1(b) > t]dt ds

≥ λ
∫ (Ḡ(b))

−(1−ε)

t0

∫ (Ḡ(b))
−(1−ε)

s

1

t(1+ε)α
dt ds

=
λ

(1 + ε)α− 1

[(
Ḡ(b)

)−(1−ε)(2−(1+ε)α)

(2− (1 + ε)α)
− t

(2−(1+ε)α)
0

(2− (1 + ε)α)

−
(
Ḡ(b)

)−(1−ε)(2−(1+ε)α)
+ t0

(
Ḡ(b)

)−(1−ε)(1−(1+ε)α)

]

=
λe(1−ε)(2ν−(1+ε)µ)b

(2− (1 + ε)α)

(
1− t

(2−(1+ε)α)
0

(1 + ε)α− 1
e−(1−ε)(2ν−(1+ε)µ)b

+ t0
2− (1 + ε)α

(1 + ε)α− 1
e−(1−ε)νb

)

=
λe(1−ε)(2ν−(1+ε)µ)b

(2− (1 + ε)α)
(1 + o(1)).

Passing b→∞ and then ε→ 0 yields

log

∫ ∞
0

Cov(M(t),M(t+ s))ds & (2ν − µ)b,

which shows the lower bound.
Next we prove the upper bound. For η1 > 1, we obtain∫ ∞

0

∫ ∞
s

P[T1(b) > t]dt ds

=

∫ (Ḡ(b))
−η1

0

∫ ∞
s

P[T1(b) > t]dt ds

+

∫ ∞
(Ḡ(b))

−η1

∫ ∞
s

P[T1(b) > t]dt ds

, I1 + I2.

By Lemma 2, we have that, for a fixed ε > 0 and η1 = 1 + 2ε

there exists b0 such that for all b > b0 and t >
(
Ḡ(b)

)−η1
,

P[T1(b) > t] ≤ exp
(
−t1−

1
η1−ε

)
.

For 0 < ζ = 1 − 1/(η1 − ε) < 1, using the above inequality
in I2, we have that for all b > b0,

I2 ≤
∫ ∞

(Ḡ(b))
−η1

∫ ∞
s

e−t
ζ

dt ds

≤
∫ ∞

(Ḡ(b))
−η1

(
1

ζ
− 1

)
Γ

(
1

ζ
, sζ
)
ds,

where Γ (x, s) =
∫∞
s
tx−1e−tdt is the upper incomplete

Gamma function. For ε > 0, there exists s0 such that for all
s > s0, Γ (x, s) ≤ (1 + ε)sx−1e−s. Now, we can choose b0
such that for all b > b0,

(
Ḡ(b)

)−η1
> s0. Hence, as b→∞,

I2 ≤
∫ ∞

(Ḡ(b))
−η1ζ

(1− ε)
(

1

ζ
− 1

)2

s
2
ζ−1e−sds→ 0.

To obtain an upper bound on I1, we use Lemma 1. Using
Proposition 2, there exists t0 > 0 such that for all t > t0,

P (T (∞) > t) <
1

tα−ε
.

Now, we can choose b0 such that for all b > b0,
(
Ḡ(b)

)−η1
>

t0, and thus,

I1 ≤
∫ t0

0

∫ ∞
s

P[T1(b) > t]dt ds

+

∫ (Ḡ(b))
−η1

t0

∫ ∞
s

P[T1(∞) > t]dt ds

, I11 + I12.
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For I11,

I11 =

∫ t0

0

∫ t0

s

P[T1(b) > t]dt ds

+

∫ t0

0

∫ ∞
t0

P[T1(b) > t]dt ds

≤ t20 +

∫ t0

0

∫ ∞
t0

1

tα−ε
dt ds,

which, due to 1 < α < 2, is upper bounded by a finite constant
independent of b.

For I12, we have that for all b > b0,

I12 ≤
∫ (Ḡ(b))

−η1

t0

∫ ∞
s

1

tα−ε
dt ds

≤ 1

(α− ε− 1)(2 + ε− α)
eη1b((2+ε)ν−µ).

Now, by letting ε→ 0, and η1 → 1 we have that

log

∫ ∞
0

Cov(M(t),M(t+ s))ds . (2ν − µ)b.

n
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