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Chapter 1

Cross-Layer Resource Allocation in Energy Harvesting

Sensor Networks

Zhoujia Mao, C. Emre Koksal, Ness B. Shroff

1. Introduction

Recent advances in the field of wireless communications and data acqui-

sition have enabled us with the unique capability to remotely sense our

environment. Data acquisition networks can be used to sense natural as

well as human-created phenomena. Several experimental networks are al-

ready in place for studying earthquakes, fire, and glacial movements, which

are all critical to human existence. As these applications require deploy-

ment in remote and hard-to-reach areas, it is to ensure that such networks

can operate unattended for long durations. The lack of easy access to a

continuous power source in most scenarios and the limited lifetime of bat-

teries have hindered the deployment of such networks. To that end, new

and exciting developments in the areas of renewable sources of energy1–3

suggest that this is feasible. These renewable sources of energy could be

attached to new nodes and would typically provide energy replenishment

at a slow rate (compared to the rate at which energy is consumed by a

continuous stream of packet transmissions) that could be variable and de-

pendent on the surroundings. For example, self-powered sensors have been

developed that rely on harvesting strain and vibration energies from their

working environment,1 as well as other types of energy sources including

solar cells.2,3 Further, sensor networks could be comprised of highly het-

erogeneous nodes in which some nodes may have more efficient sources of

energy replenishment than others (including some nodes that may have

no renewable sources of energy), thus making it imperative that energy

efficient mechanisms be put in place to manage these networks. The de-

sign and control of networks with the added dimension of renewable energy

makes the problem of managing these networks substantially different from

their non-replenishment counterparts. For example, in the case of networks

1
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without replenishment, having a battery that is close to being full is a de-

sirable feature. However, in the case of a network with replenishment, a full

battery means that there can be no replenishment. Hence this is a missed

opportunity to utilize the replenishment energy, resulting in a lower overall

performance. This is further exacerbated by the fact that, in practice, bat-

tery replenishment rates are the highest when battery levels are low, which

means that determining the right balance between being disconnected and

achieving high throughput is a complex issue. Moreover, while there has

been significant prior work on sensor networks that has explicitly or im-

plicitly optimized the network lifetime (often defined as the time when the

first node runs out of energy) new metrics of performance are required for

networks with replenishment. For example, with appropriately chosen data

sampling rate and routes, the lifetime of network with replenishment could

be made infinite, and metrics, such as the throughput or some function of

the throughput are more relevant in such scenarios. Thus, a new resource

management paradigm needs to be developed to optimize the performance

of sensor networks with energy replenishment. For networks with replen-

ishment, conservative energy expenditure may lead to missed recharging

opportunities due to battery capacity limitations, and aggressive usage of

energy may lead to lack of coverage or connectivity for certain time periods,

which could hurt the applications’ requirements. Thus, new techniques and

protocols must be developed to balance these seemingly contradictory goals

to maximize sensor network performance by jointly allocating energy and

other resources such as bandwidth, rate and routes.

There are numerous works in both theoretical and systems oriented re-

search on rechargeable networks.4–24 In this chapter, we focus on some of

these key papers.4–8 Many fundamental wireless communication and net-

working problems can be stated as utility maximization problems subject

to resource (e.g., energy and bandwidth, rate and routes) constraints. The

utility functions can be the throughput, sum rate or sum of concave shaped

rate etc. These problems have been widely addressed for networks with-

out renewable energy sources. We focus on the development of efficient

resource allocation schemes in the rechargeable counterpart. In static re-

source allocation, decisions are usually made only once at the beginning of

a long period, while in dynamic resource allocation, decisions are made in

each time slot. In,4 a convex optimization problem is formulated to fairly

allocate resource while incorporating the renewable energy constraint, i.e.,

the long term energy consumption rate should be less than the long term

replenishing rate. However, for applications with rechargeable battery, en-
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suring energy consumption rate being less than replenishing rate is not

enough. In addition, the allocated energy in each time slot should not be

larger than the available amount of energy in the battery. Dynamic for-

mulation of utility maximization problems that make resource allocation

decisions in each time slot are formulated in.6–8 In,5 the problem of how

to efficiently route packets through rechargeable network is studied.

2. Static Resource Allocation with Renewable Energy

Similar to the non-renewable counterpart, static resource allocation prob-

lems are also studied in rechargeable networks. In static resource allocation,

the allocation decision is made over a long period or at the beginning of an

event, rather than updated in each time slot.

2.1. Rate, Bandwidth and Flow Allocation with Renewable

Energy

We denote a directed wireless network by G = (N ,L), where N is the set

of nodes and L is the set of directed links. We assume that our network

is an acyclic sensor network with one sink node s ∈ N to be constructed

for data collection as shown in Fig. 1. Similar to the non-rechargeable

network counterpart,25–27 we formulate4 a utility maximization problem as

a convex optimization problem while constructing the data collection net-

work. For each node n ∈ N , let An, Dn, Cn and Pn denote its ancestors,

descendants, children and parent, respectively. The energy cost for sensing

the environment at node n is represented by Esen
n . We assume that the

expected number of retransmissions over a long period is known for each

link. Let Etran
n,m represent the energy cost for delivering a packet over link

(n, m) and Erec
n represent the energy cost for receiving a packet at node n.

We consider a time slotted system and the time during a day is broken into

multiple time intervals called epochs. The length of each epoch is T slots.

We use rn(e) to represent the average (long term) energy replenishment

rate of node n in epoch e, while rn(t) is used to represent the real instanta-

neous (short term) energy replenishment rate of node n in time slot t. For

each epoch e, rn(e) = 1
T

∑eT
t=(e−1)T+1 rn(t). We assume that rn(e) can be

estimated by each node with high accuracy. Moreover, we define fn,m to

be the fractional outgoing traffic of node n that passes through a parent

node m and zn,m(~f) to be the fractional outgoing traffic of node n that

passes through an ancestor m, where ~f is the vector of fn,m, ∀n, m. Thus,
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fn,m = 0, ∀m 6= Pn and zn,m(~f) = 0, ∀m /∈ An. The recursive relation

between the two variables is zn,m(~f) =
∑

k∈Pn
fn,kzk,m(~f). The capacity

of link (n, m) is represented by cn,m.

n

n

n

n

Fig. 1. Sensor Network Model.

We define the utility function Un(Rn) for node n to be log(Rn) where

Rn is the sampling rate of node n. Therefore, for each epoch e, the utility

optimization problem can be formulated as the following strictly concave

maximization problem:

P (2.1) max
~R,~c, ~f

∑

n

log(Rn)

s.t. Esen
n Rn +

∑

m∈Dn

zm,n(~f)Erec
n Rm +

∑

m∈Pn

Etran
n,m cn,m ≤ rn(e),

(1)

Rn +
∑

m∈Dn

zm,n(~f)Rm ≤
∑

m∈Pn

cn,m, (2)

~R ≻ ~0, ~c ∈ C, ~f ∈ F . (3)

Constraints 1 and 2 are the energy conservation and flow balance con-

straints, respectively. The flow balance constraint states that the sum of

allocated capacity for each outgoing link should be greater than the total

amount of traffic going through each node, including its own data. Besides

these two constraints, the amount of capacity allocated on each link must

be in the feasible capacity region C. F is the feasible region of the rout-
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ing variables ~f . We assume the node exclusive interference model as in.25

Thus, the feasible capacity region can be similarly defined as the convex

hull of all the rate vectors of the matchings in G.

Note that within epoch e, P(2.1) is a static problem. The standard

method to solve this static problem involves the application of the dual

decomposition and the subgradient methods. However, the implementation

of these solutions in the network involves a large overhead due to message

exchange between neighboring nodes. Consequently, the convergence time

becomes an important issue. To that end, we introduce QuickFix, which,

in each iteration of the subgradient method, exploits the special structure

of directed acyclic network to form an efficient control message exchange

scheme. This scheme is motivated by the general solution structure of a

dynamic program. QuickFix is based on the hierarchical decomposition

approach as the starting point. By relaxing the energy conservation and

flow balance constraints in Problem P(2.1), we get the partial dual function

q(~µ,~v) as

q(~µ,~v) = max
~R,~c, ~f

∑

n

log(Rn) +
∑

n

µn

(

rn(e) − Esen
n Rn −

∑

m∈Dn

zm,n(~f)Erec
n Rm

−
∑

m∈Pn

Etran
n,m cn,m

)

+
∑

n

vn

(

∑

m∈Pn

cn,m − Rn −
∑

m∈Dn

zm,n(~f)Rm

)

s.t. ~R ≻ ~0, ~c ∈ C, ~f ∈ F

The dual problem is then min~µ�~0,~v�~0 q(~µ,~v). Since the dual function is

not differentiable, the subgradient method28 is applied to iteratively update

the Lagrange Multipliers ~µ and ~v at each node using:

µ(i+1)
n =

[

µ(i)
n − sµn

(

rn(e) − Esen
n Rn −

∑

m∈Dn

zm,n(~f)Erec
n Rm

−
∑

m∈Pn

Etran
n,m cn,m

)

]+

v(i+1)
n =

[

v(i)
n − svn

(

∑

m∈Pn

cn,m − Rn −
∑

m∈Dn

zm,n(~f)Rm

)

]+

(4)

where the notation [·]+ means projection to the positive orphan of the real

line and sµn
and svn

, ∀n are stepsizes.
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The primal problem can be decomposed into the following subproblems:

max
Rn, ~f

log(Rn) − µn

(

Esen
n Rn −

∑

m∈Dn

zm,n(~f)Erec
n Rm

)

− vn

(

Rn

+
∑

m∈Dn

zm,n(~f)Rm

)

s.t. Rn > 0, ~f ∈ F (5)

max
~c

∑

(n,m)∈L

(

vn − Etran
n,mµn

)

cn,m

s.t. ~c ∈ C (6)

In QuickFix, the subproblem in (6) is equivalent to the maximum

weighted matching problem. Under the node exclusive interference model,

it can be solved in polynomial time. However, in order to solve the maxi-

mum weighted matching problem in a distributed fashion, we utilize the

heuristic algorithm in.29 While applying the algorithm, instead of the

queue difference between neighboring nodes, we use the combined energy

and queue state of a node (vn −Etran
n,mµn) to modulate the MAC contention

window size, when a node n attempts to transmit a packet over the link

(n, m).

Since the objective function in (5) of QuickFix is strictly concave in

(~R, ~f), the unique maximizer satisfies:

R∗
n =

1

Esen
n µn + vn +

∑

m∈An
zn,m(~f∗)

(

Erec
m µm + vm

)
. (7)

We refer to Esen
n µn + vn in Equation (7) as node n’s local price, and

Wn =
∑

m∈An
zn,m(~f∗)

(

Erec
m µm + vm

)

as its aggregate price. Observe

that if a node wants to maximize its rate, it should find the path such

that its aggregate price Wn is minimized, i.e., it is a joint routing and

rate control problem. Since our formulation utilizes the directed acyclic

structure, this allows a node to calculate its aggregate price recursively from

those of its parents as stated in Proposition 1. Furthermore, Proposition 1

implies that a node should select the parent with the minimum sum of

local and aggregate prices as its relay node in the directed acyclic topology.

This motivates the following distributed routing and rate control algorithm.

Each node collects the local and aggregate prices from all its parents and

selects the parent with the minimum sum of the local and aggregate prices

as the relay node while constructing the directed acyclic network. Then,

each node uses Equation (8) to calculate its own aggregate price and then
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applies Equation (7) to determine its rate. Having determined the local

rate and the outgoing link to use, a node distributes its local and aggregate

prices to its children, so that the children nodes can determine their routes

and rates. This process continues until the leaf nodes are reached. Now,

starting from the leaf nodes, each node reports its aggregate traffic to its

parents, so that the parent nodes can have the needed information to update

their local prices. Aggregate traffic Fn of node n is the total amount of

traffic generated by the descendants that goes through node n. Similar to

the computation of the aggregate price, a node can compute its aggregate

traffic recursively using Equation (9).

Proposition 1. 4 The aggregate price Wn can be recursively computed as

Wn =
∑

m∈Pn

fn,m

(

(

Erec
m µm + vm

)

+ Wm

)

(8)

Proposition 2. 4 The aggregate traffic Fn of node n can be recursively

computed as

Fn =
∑

k∈Cn

fk,n

(

Rk + Fk

)

(9)

Fig. 2 compares the convergence time of QuickFix with the standard

dual-based algorithm when a fixed rn(e) is given. Here, QuickFix is run for

a directed acyclic network of 67 nodes. The improvement in convergence

rate with QuickFix relative to the standard dual-based solution is apparent.
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Fig. 2. The convergence time comparison between QuickFix and the standard dual-
based algorithm.
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2.2. Energy-Aware Routing With Renewable Energy

We have thus far focused on exploiting the harvested energy to improve

the achievable utility of link rates in the network. An important question

that5 attempts to answer is how to efficiently route packets through the

network to improve the overall performance. In this section, G = (N ,L)

stands for a directed wireless multihop network. Data packets arrive into

the network and the algorithm developed in5 decides whether to accept or

reject them based on the energy resource on potential routes. This is an

event driven problem, i.e., decisions are made every time a packet arrives

into the network. The energy resource and route are allocated statically

for a given packet upon its acceptance.

A 2-tuple (Etran
n,m , Erec

n,m) is associated with each edge (n, m) ∈ L, where

Etran
n,m is the transmission energy cost and Erec

n,m is the reception energy cost.

More precisely, if a data packet of length l is sent directly from node n to

node m, an amount of energy equal to lEtran
n,m will be subtracted from the

residual energy of node n, and lErec
n,m will be subtracted from the residual

energy of node m. For simplicity, we assume that the size of a control packet

is negligible compared to the size of a data packet. We define the unit

energy cost of node n on path P as En(P) = Erec
n′′(P),n + Etran

n,n′(P), ∀n ∈ P

where nodes n′′(P) and n′(P) are the upstream and downstream neighbors

of node n in path P , respectively.

We consider a discrete time system in which each node begins with a

fully charged battery that has a capacity of Bn. At the end of each time

slot t, qb
n(t) is the residual energy at node n. Each node falls in one of the

two categories depending on whether a renewable energy source is attached

to it. We use Nr to denote the set of nodes with energy replenishment,

and Np to denote the set of nodes with no energy replenishment. At the

beginning of time slot t, node n ∈ Nr receives the energy accumulated due

to replenishment in the previous time slot, represented by rn(t− 1). At all

times, the maximum energy at node n is not allowed to exceed Bb
n. Data

packet routing requests arrive to the network sequentially, the j-th of which

can be described as

βj = (sj , dj , lj , t
s
j , ρj) (10)

where sj is the source node of the j-th packet routing request, dj is the

destination, lj is the packet length, tsj is the arrival time of the request,

and finally ρj is the revenue gained by routing this packet through the

network. A request can be accepted only if there is at least one feasible
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path (that is, each node along the path must have at least ljEn(Pj) amount

of residual energy) in the system when the request arrives. If the routing

request is accepted and Pj is the route used to accommodate the request,

then ljEn(Pj) will be the amount of energy expenditure at node n for

n ∈ Pj. We also assume that the reduction of energy is instantaneous for

all the nodes along the path since the time-scale of energy replenishment

is usually much larger than the time-scale of packet forwarding. In other

words, we assume the delay due to packet transmission, queueing, etc., is

negligible compared to the time it takes to replenish the energy consumption

of transmitting/receiving one packet. For any node n ∈ Nr, the energy

model can be summarized by the following equation

qb
n(t) =min[qb

n(t − 1) + rn(t − 1), Bb
n]

− 1[βj is accepted at time t and n∈Pj ]ljEn(Pj), ∀n ∈ Nr

It is assumed that each node has an accurate estimate of its own short

term energy replenishment process. More precisely, at time slot t, node n

knows rn(t), rn(t + 1), . . . , rn(t̂n), where t̂n is the earliest time the battery

at node n would be fully recharged if no request were accepted at or after

time t. It is worth noting that t̂n is dependent on the residual energy of

node at the arrival time of a request. In practice, this type of short term

prediction can be easily implemented. We also assume that t̂n is finite for

n ∈ Nr. More specifically, we denote T < ∞ as an upper bound on the

time it takes to fully charge the empty battery at any given node n ∈ Nr.

For any node n in Np, the corresponding energy model can be written as

qb
n(t) = qb

n(t − 1) − 1[βj is accepted at time t and n∈Pj ]ljEn(Pj), ∀n ∈ Np

Our goal is maximize the total revenue over some finite horizon [0, τ ]

Jτ =
∑

j:j≤kτ

ρj1[βj is accepted] (11)

where kτ is the index of the last arrival in the time interval [0, τ ].

The basic idea of our algorithm is to assign a cost to each node, which

is an exponential function in its residual energy and then use shortest path

routing with respect to this metric. To account for the timing relation-

ship between the energy consumption and replenishment, we also need to

measure the impact of previously accepted requests.

For any node n with renewable energy source, i.e., n ∈ Nr, we begin by

defining a set of parameters to describe the effect of previously accepted

routing requests when considering the new request βj . More specifically, let
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∆tn(j) be the amount of time it takes for the incoming energy, accumulated

from time slot tsj−1, to equal Bb
n−qb

n(tsj−1). We define t̂n(j) = tsj−1+∆tn(j)

as the earliest time the battery at node n would be fully recharged if no

request were accepted after request βj−1. It can also be written as

t̂n(j) = min
t≥ts

j−1

[

t :

t−1
∑

i=ts
j−1

rn(i) ≥
(

Bb
n − qb

n(tsj−1)
)

]

.

To characterize the energy consumption due to previous packets, we

define the new power depletion index

λn(j, t) =















0, t ≥ t̂n(j)

λn(kt, t), t < tsj−1
Bb

n−qb
n(ts

j−1)−
∑ t−1

i=ts
j−1

rn(i)

Bb
n

, othwewise

where kt = max[j : tsj−1 ≤ t]. In fact, λn(j, t) is the fraction of energy

consumed due to {β1, β2, . . . , βj−1} at node n, as measured at time t. Note

that new routing requests (with index greater than j − 1) can arrive at

or before time t, but their energy consumption will not be included in the

calculation of λn(j, t). There are three cases in the above definition.

• t ≥ t̂n(j): By definition of t̂n(j), λn(j, t) should be zero at or after

time t̂n(j).

• tsj−1 ≤ t ≤ t̂n(j): In this case, part of the energy consumption has

been restored.

• t < tsj−1: In this case, the time slot t is before the arrival time

of request βj−1; hence, it is almost meaningless to talk about the

energy consumption of {β1, β2, . . . , βj−1} at time t. For preciseness,

we define λn(j, t) in this case to be λn(kt, t), where kt is the largest

request index j such that λn(j, t) is “meaningful.”

Fig. 3 shows the amount of energy at node n assuming that no request is

accepted after request j−1. In reality, it is conceivable that only a fraction

of the last replenishment is received by the node, due to limited battery

capacity. This is taken into account in the definition of λn(j, t).

For any node n with no renewable energy source, i.e., n ∈ Np, the power

depletion index λn(j) is defined as λn(j) = 1 −
qb

n(ts
j−1)

Bb
n

, where qb
n(tsj − 1)

is the residual energy at node n when considering request βj .
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Fig. 3. Amount of energy at node n assuming that no request is accepted after request
j − 1.

We now define our routing metric used on each node as

Cn(j,P) =

{

∑t̂n(j)−1
t=ts

j
(µλn(j,t) − 1)ljEn(Pj), n ∈ Nr

T (µλn(j) − 1)ljEn(Pj) n ∈ Np

(12)

where µ is a constant to be defined later, and P is a path from sj to dj . We

recall that T < ∞ as an upper bound on the time it takes to fully charge the

empty battery at any given node n ∈ Nr. The main change in the definition

of the node cost metric for n ∈ Nr is to take into account the replenishment

sample in the immediate future. Again, the cost associated with P when

considering request βj will be calculated as CostP(j) =
∑

n∈P Cn(j,P).

Our proposed algorithm E-WME (Energy-opportunistic Weighted Min-

imum Energy) simply check if the least cost route P from sj to dj satisfies

CostP(j) ≤ ρj for an incoming routing request j. If yes, accept the request

and route he packet on the least cost route. Otherwise, reject the request.

It is worth noting that the admission control of routing requests is done

in an energy-opportunistic fashion. Again, we turn to the example of a

sensor network powered by solar cells. Let us assume that a request arrives

at the network right after sunset. Recall our assumption that each node

knows its short-term energy replenishment schedule. At this moment, each

node knows that the energy replenishment rate will be much smaller for the

several hours to come (in practice, this type of knowledge can be gained by

evaluating the energy replenishment schedule over the past few days). The

t̂(·) calculated will then be relatively large, so the cost of routing the packet

will be higher than that during the daytime. As compared to its daytime
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policy, the network is, thus, more conservative in accepting the request,

which is precisely what the network should do in this particular scenario.

In a hybrid network where both kinds of nodes are present, we look at two

nodes: one with energy replenishment and one without. Assuming that

they both have the same residual energy and that the routing request takes

the same communication costs from them, it is clear that the cost metric

for the node with energy replenishment is smaller. Therefore, this node is

more likely to be used than the one without energy replenishment.

We then show that E-WME is an online algorithm with asymp-

totically optimal competitive ratio. The competitive ratio is defined

as supτ supall input sequences in [0, τ ]
Jτ,off

Jτ,on
, where Jτ,off is the performance

achievable by any offline algorithm and Jτ,on is the performance of the

given online algorithm, where the performance is defined in Equation (11).

A competitive ratio of r means that the performance of the online algo-

rithm is at least 1
r

that of any offline algorithm. In other words, a smaller

competitive ratio means better performance.

We need the following two assumptions:

(A1)

1 ≤
1

H
·

ρj

ljEn(Pj)T
≤ F, ∀n ∈ Pj

(A2)

ljEn(Pj) ≤
Bb

n

log µ
, ∀n ∈ Pj

where Pj is the path chosen by either the online or the offline algorithm to

route βj , H is the maximum hop count allowed for any path, F is a constant

chosen large enough to satisfy (A1), T < ∞, as defined before, is an upper

bound on the time it takes to fully charge the empty battery at any given

node n ∈ Nr, and µ = 2(HFT + 1). Assumption (A1) requires that the

revenue from a packet scales with the amount of resource it requests. This

is quite reasonable and certainly agrees with the definition of revenue as

throughput or weighted throughput. Assumption (A2) guarantees that the

energy claimed by a packet is not larger than a certain fraction of the total

energy available at any single node. Under assumptions (A1) and (A2), we

have the following theorem.

Theorem 1. 5 Asymptotic Optimality of the E-WME Algorithm:

(I) The E-WME algorithm has a competitive ratio upper bounded by

O(log(|N |)), where |N | is the number of nodes in the network.
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(II) The competitive ratio of any online routing scheme is lower bounded

by Ω(log(|N |)).

From (I) and (II), our algorithm is asymptotically optimal.

Fig. 4 shows the throughput comparison between our E-WME algo-

rithm and other routing algorithms in the literature. It can be seen that

the E-WME routing always has better throughput than the other routing

algorithms∗. The two main reasons are that E-WME is optimal in the

sense of minimizing the competitive ratio, and that it strikes the right bal-

ance between saving communication cost and distributing the load. These

characteristics are not present in other power aware routing algorithms.
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Fig. 4. Throughput comparison of E-WME to other schemes.

3. Dynamic Resource Allocation with Renewable Energy

For applications with rechargeable batteries, ensuring energy consumption

rate being less than replenishing rate as formulated in Section 2.1 is not

enough. In addition, as shown in Fig. 5, the allocated energy P (t) in each

time slot t should not be larger than the available amount of energy qb(t) in

the battery with size Bb and replenishment r(t), which requires a dynamic

decision formulation.

∗In fact the improvement in using E-WME will even be larger if replenishment rates
chosen are higher.
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Fig. 5. Battery Queue Model.

3.1. Basic Performance Limits and Tradeoffs with Renew-

able Energy

In this section, we explain how the authors in7 study performance limits

and tradeoffs between data rate and battery outage with renewable energy

under infinite time horizon. We consider a single rechargeable node with

battery size Bb. We denote the available energy in the battery as qb(t) at

time t. The battery replenishes at a rate r(t). The process {r(t), t ≥ 1}

is assumed to be an ergodic stochastic process with a long term mean

limT→∞

∑T
t=1 r(t)

a.s.
−−→ r̄. An energy management scheme S draws energy

from this battery at a rate PS(t) to achieve certain tasks. The success of

the node in achieving these tasks is measured in terms of a utility function

U(PS(t)) of the consumed energy PS(t). We assume U(x) to be a concave,

non-decreasing and analytic function of x over x ≥ 0. We define the time

average utility,

ŪS(T ) =
1

T

T
∑

t=1

U(PS(t)). (13)

We consider the optimization problem in which a node tries to maximize

its long-term average utility, ŪS = lim infT→∞ ŪS(T ), subject to battery

constraints

P (3.1.1) max
{PS(t), t≥1}

ŪS

s.t. qb(t) = min[Bb, qb(t − 1) + r(t) − PS(t − 1)],

PS(t) ≤ qb(t).

One approach to solving this optimization problem is by using Markov

decision process (MDP) techniques. Since solving MDPs is computationally

intensive, these methods may not be suitable for computationally-limited

sensor nodes. Consequently, we seek schemes that are easy to implement

and yet achieve close to optimal performance. The next lemma gives an up-

per bound for the asymptotic time-average utility achieved over all ergodic

energy management policies.
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Lemma 1. 7 Let ŪS∗

be the optimal objective value to P(3.1.1). Then,

ŪS∗

≤ U(µ).

The proof of Lemma 1 uses Jensen’s inequality and conservation of en-

ergy arguments. Lemma 1 tells us that for any ergodic energy management

scheme S, ŪS ≤ U(r̄). With an unlimited energy reservoir (i.e., Bb = ∞)

and average energy replenishment rate µ, if one uses PS(t) = r̄ for all

t ≥ 1, this upper bound can be achieved. However, if Bb < ∞, achieving

ŪS = U(r̄) using this simple scheme is not possible. Indeed, due to finite

energy storage and variability in r(t), the battery will occasionally get dis-

charged completely. At such instances, PS(t) has to be set to 0, which will

reduce the time-average utility. The question we answer is, “how close can

the average utility ŪS get to the upper bound asymptotically, as Bb → ∞,

while keeping the long-term battery discharge rate low?”

We will show that there is a trade-off between achieving maximum util-

ity and keeping the discharge rate low. First, we make some weak assump-

tions on the replenishment process r(t). In particular, we assume that the

asymptotic semi-invariant log moment generating function,

Λ̄r(s) = lim
T→∞

1

T
log E

[

exp

(

s

T
∑

t=1

r(t)

)]

, (14)

of r(t) exists for s ∈ (−∞, smax), for some smax > 0. We also assume that

the asymptotic variance σ̄2
r , limT→∞

1
T

var(
∑T

t=1 r(t)) exists†. Note that,

in practice, the recharging process is not necessarily stationary. While

this assumption does allow the possibility that the statistics of r(t) has

variations (e.g., due to clouds and the solar power at different times of the

day), it rules out the possibility of long-range dependencies in r(t).

From previous discussion, we can infer that by choosing a battery drift,

defined as r(t) − P (t − 1), that goes to zero with increasing battery size,

one might achieve a long-term average utility that is close to U(r̄) as Bb

increases. However, smaller drift away from the empty battery state implies

a more frequent occurrence of the complete battery discharge event. In the

following theorem, we quantify this tradeoff between the achievable utility

and the battery discharge rate, asymptotically in the large battery regime.

In this regime, the battery size Bb is large enough for the variations in r(t)

†Examples of valid processes include the following. 1) Any i.i.d. process with a sample
distribution that has finite moments of all orders; 2) All Gaussian processes with an
auto-covariance function that has a finite integral; 3) The process obtained by adding a
deterministic periodic function of time (to mimic the daily cycles of solar radiation) to
the aforementioned processes in 1), 2).
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to average out nicely over the time scale that qb(t) changes significantly.

Consequently, we now define the long-term battery discharge rate as the

probability of discharge, i.e., po(Bb) , limT→∞
1
T

∑T
t=1 1o(t), where the

indicator 1o(t) = 1 if qb(t) = 0 and is identical to 0 otherwise.

Next, we show that one can achieve a battery discharge probability that

exhibits a polynomial decay of arbitrary order with the battery size, and at

the same time achieves a utility that approaches the maximum achievable

utility as (log Bb)2/(Bb)2.

Theorem 2. 7 Consider any continuous, concave, nondecreasing, and

analytic utility function U(P (t)) over the nonnegative real line such that

|∂
2U(x)
∂x2 | < ∞ for all x > 0. Given any β ≥ 2, there exists an energy man-

agement scheme B such that the associated battery discharge probability

po,B(Bb) = Θ((Bb)−β) and U(r̄) − ŪB = Θ(( log Bb

Bb )2)

Consider the allocation scheme B in which

PB(t) =

{

min[r̄ − δB, qb(t)], qb(t) < Bb

2

r̄ + δB, qb(t) ≥ Bb

2

(15)

for some δB > 0. As shown in Fig. 6 (a), the instantaneous utility associated

with Scheme B alternates between U− and U+, depending on the battery

state. By choosing δB = βσ̄2
r

log Bb

Bb for some β ≥ 2, we show that long-

term maximum utility U(r̄) can be achieved asymptotically while achieving

decay, as a polynomial of arbitrarily high order, for the battery discharge

probability. We note that while the order of the polynomial decay β can be

made arbitrarily large, it comes at the expense of slower convergence (by

some constant factor) to the maximum utility.

Here, we illustrated that with a simple scheme, it is possible to achieve

desirable scaling laws for the performance of a given task, under the assump-

tion that the asymptotic moment generating function of the replenishment

process exists. To illustrate the theorem we consider a specific example.

Example 1. Achievable Rate in a Gaussian Channel: We study the

basic limits of point to point communication with finite but replenishing

energy stores. For simplicity, we consider the static Gaussian channel. At

time t, the transmitter transmits a complex valued block (vector of symbols)

X(t) of unit power and the receiver receives Y (t). We have,

Y (t) = hX(t) + W (t), (16)
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2 , and (c) Drifts of the data queue and battery state for scheme

Q

where the channel gain h is a complex constant and W (t) is additive Gaus-

sian noise with sample variance N0. We define the channel SNR as γ ,
|h|2

N0
.

The maximum amount of data that could be reliably communicated over

this channel with an amount of energy P (t) at time t is

µ(P (t)) = log2(1 + P (t)γ) bits/channel use, (17)

assuming the block size is long enough so that sufficient averaging of addi-

tive noise is possible. Thus, the rate at which reliable communication can

be achieved at a given block is a concave non-decreasing function of the

transmit power and it can be viewed as our utility function. Consequently,

using a constant power r̄, the maximum utility of µ̄ = µ(r̄) can be achieved,

which is the famous Gaussian channel capacity result. Clearly, the capacity

is possibly achievable, only if the energy store is infinite.

With an energy store that is not capable of providing power at a constant

rate (e.g., an energy replenishing battery), one may observe outages due

to occurrences of complete discharge at times. Thus, for such stores, it
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is not possible to achieve the aforementioned Gaussian channel capacity.

However, we can show that, using our simple energy management scheme,

one can achieve an average rate that converges to the capacity at an outage

probability that converges to zero asymptotically as Bb → ∞. We assume

that each time slot is large enough for sufficiently long code blocks to be

formed.

We simply substitute U(·) with µ(·) in Equation (13) to get the relevant

optimization problem. With an unlimited energy store (Bb = ∞) of limited

average power r̄, the maximum achievable long term average rate is identical

to the channel capacity, i.e., µ(r̄) = log2(1+ r̄γ) bits/channel use. By using

the energy management scheme B given in Equation (15), an average rate

µ̄B can be achieved such that µ(r̄) − µ̄B = Θ( (log Bb)2

(Bb)2
) while the battery

discharge (i.e., the outage) probability follows po,B(Bb) = Θ((Bb)−β) for

any given β ≥ 2.

To understand the strength of Theorem 2, we note that it is not trivial to

achieve decaying discharge probability and maximum utility with increas-

ing battery size. In fact, an ergodic‡ energy management scheme cannot

achieve exponential decay in discharge probability and convergence (even

asymptotically) to the maximum average utility function simultaneously.

We formalize this statement in the following theorem.

Theorem 3. 7 Consider any continuous, concave and nondecreasing utility

function U(·). If an ergodic energy management scheme S has a discharge

probability po,S(Bb) = Θ(exp(−αcB
b)) for some constant αc > 0, then the

time average utility, ŪS , for Scheme S satisfies U(r̄) − ŪS = Ω(1).

We then extend the problem to the case when data packets arrive at

a node and are kept in a finite buffer before transmission. Hence, the

task is to transmit packets arriving at the data buffer without dropping

them due to exceeding the buffer capacity. We define qd(t) as the data

queue state at time t, and the data buffer size Bd < ∞. The data ar-

rival process A(t), represents the amount of data (in bits) arriving at the

data buffer in the time slot t. The process {A(t), t ≥ 1} is an ergodic

process independent of the energy replenishment process {r(t), t ≥ 1} and

E[A(t)] = λ. We assume that the process A(t) has a finite asymptotic vari-

ance σ̄2
A = limT→∞

1
T

var(
∑T

t=1 A(t)). The energy replenishment model is

the same as used previously. We use µ(·) as given in Equation (17) as the

‡An ergodic energy management scheme PS(t) is the one that satisfies
limT→∞

1
T

∑

T

t=1 PS(t) = E[PS(t)]
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rate-power function (continuous, concave, non-decreasing, and analytic) for

the wireless channel and assume that data is served at that rate as a func-

tion of the consumed energy P (t) at time t. We also assume that λ < µ(r̄).

Without this condition, there exists no joint energy and data buffer control

policy that can simultaneously keep the long-term battery discharge and

data loss rates arbitrarily low asymptotically, as Bd, Bb → ∞.

The objective of an efficient energy management scheme in this case is

to maximize the average utility function of the data transmitted subject to

battery and data buffer constraints:

P (3.1.2) max
P (t), ∀t≥1

lim inf
T→∞

1

T

T
∑

t=1

UD(µ(P (t)))

s.t. qb(t) = min[Bb, qb(t − 1) + r(t) − P (t − 1)],

qd(t) = min[Bd, qd(t − 1) + A(t) − µ(P (t − 1))],

0 ≤ P (t) ≤ qb(t), µ(P (t)) ≤ qd(t).

Here, UD(µ(P )) is a non-decreasing, concave, and analytic utility gained by

transmitting µ(P ) bits. Since λ < µ(r̄), we know that UD(λ) is an upper

bound on the achievable long-term utility with any energy management

scheme. Solution of P(3.1.2) jointly controls the data queue state and the

battery state to avoid energy outage and data overflow while maximizing the

utility. The main complexity in such an approach stems from the fact that

the drifts of qd(t) and qb(t) are dependent. With this dependence, a critical

factor one needs to take into consideration is the relative “size” of the data

buffer with respect to the battery. In the sequel, we assume a large battery

regime, which implies that, within the duration that some change occurs in

qb(t), qd(t) may fluctuate significantly. Technically, for an Gaussian channel

with an SNR γ, this assumption implies Bb ≫ 1
γ
(2λ − 1)Bd, i.e., the total

amount of energy in the battery is much larger than that required to serve

a full data buffer worth of packets. In the subsequent asymptotic results,

in which both Bd, Bb → ∞, the large battery regime implies the following.

For all sequences of values, Bd
n, Bb

n, where both sequence goes to ∞ as

n → ∞, we assume
Bd

n

Bb
n

as n → ∞.

Intuitively, in large battery regime, an energy control algorithm should

give “priority” to adjusting the queue state to achieve a high performance.

Consequently, it should choose P (t) such that the drift of qd(t) is always

toward a desired queue state even though this may cause battery drift to

be negative. Since battery size is large, such temporary negative drifts are

expected to affect the battery discharge rate only minimally. With these
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observations, we state the following theorem, which indeed verifies our in-

tuition. This theorem shows an asymptotic tradeoff between the achieved

utility and the long-term rates of discharge and data loss as Bd → ∞. In

this regime, the data buffer size is large enough for the variations in A(t)

to average out over the time scale that qd(t) changes significantly. Conse-

quently, we now define the long-term data loss rate as the data loss prob-

ability, i.e., pd(Bd) , limT→∞
1
T

∑T
t=1 1d(t), where the indicator variable

1d(t) = 1 if qd(t) = Bd and is identical to 0 otherwise.

Theorem 4. 7 Consider any non-decreasing concave utility function UD(·)

such that |∂
2UD(µ(x))

∂x2 | < ∞ for all x > 0 and a rate-power function µ(·), both

of which are analytic in the non-negative real line. For any λ < µ(r̄), there

exists some β > 0 for which an energy management scheme Q achieves a

data loss probability pd,Q(Bb) = O((Bd)−β), a battery discharge probabil-

ity po,Q = O(exp(−αQBb)) for some αQ > 0 and a utility that satisfies

UD(λ) − ŪQ = Θ( (log Bd)2

(Bd)2 ) under the large battery regime.

Theorem 4 states that it is possible to have an exponential decay (with

Bb) for the battery discharge probability and a polynomial decay (with Bd)

for the data loss probability and at the same time achieve a time average

utility that approaches the upper bound on the achievable long-term utility,

UD(λ), as (log Bd)2

(Bd)2
. Note that UD(λ) can only be achieved with an infinite

battery and data buffer sizes.

Consider the energy management scheme Q, where

PQ(t) =

{

min[r̄ − δ
(r)
1 , qb(t)], qd(t) ≥ Bd

2

min[r̄ − δ
(r)
2 , qb(t)], qd(t) < Bd

2

, (18)

and the drifts δ
(r)
1 and δ

(r)
2 are chosen to satisfy the relationship

µ(r̄ − δ
(r)
1 ) − λ = λ − µ(r̄ − δ

(r)
2 ) = βQσ̄2

A

log Bd

Bd
(19)

where βQ is constant greater than 2. From Fig. 6 (b), we note that this

choice of energy drifts correspond to a queue drift of |δ(A)| = βQσ̄2
A

log Bd

Bd ,

toward the state Bd

2 , regardless of the queue state qd(t). The queue and

battery drifts with scheme Q are illustrated in Fig. 6 (c). We observe that

even though scheme Q regulates the data queue to a desired state (i.e., Bd

2 ),

the battery is always regulated towards full state (i.e., Bb). State equation
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for qd(t) is given by,

qd(t + 1) =

{

min[Bd, qd(t) + A(t) − λ − δ(A)], qd(t) ≥ Bd

2

max[0, qd(t) + A(t) − λ + δ(A)], qd(t) < Bd

2

, (20)

and the state equation for qb(t) is given by,

qb(t + 1) =

{

(min[Bb, qb(t) + r(t) − r̄ + δ
(r)
1 ])+, qd(t) ≥ Bd

2

(min[Bb, qb(t) + r(t) − r̄ + δ
(r)
2 ])+, qd(t) < Bd

2

, (21)

where (x)+ = max[0, x].

The following theorem quantifies tradeoff between the probabilities of

battery discharge and data loss.

Theorem 5. 7 For a channel with a rate-power function µ(·) that is contin-

uous at r̄, there exists an energy management scheme E that simultaneously

achieves

lim
Bb→∞

lim
λ↑µ(r̄)

1

Bbδ(r)
log po,E(Bb) = −

2

σ̄2
r

,

lim
Bd→∞

lim
λ↑µ(r̄)

1

Bdδ(A)
log pd,E(Bd) = −

2

σ̄2
A

,

where δ(r) = v(r̄ − µ−1(λ)), δ(A) = µ(r̄ − δ(r)) − λ for any v ∈ (0, 1).

Theorem 5 shows that, in the heavy traffic limit, we observe an ex-

ponential decay for both the battery underflow and the buffer overflow

probabilities, with the battery size and the data buffer size respectively.

However, one can also see that, there is a tradeoff in the decay exponents

of these two probabilities. More specifically, by varying δ(r), it is possible

to increase (or decrease) the decay exponent for the data loss probability.

However this will result a proportional decrease (or increase) in the decay

exponent for the battery discharge probability.

3.2. Finite Horizon Power Allocation with Renewable En-

ergy

In,6 the authors consider a time-slotted system with a finite-time operation

of T time slots. Let Bb denote the battery size. Let r(t) denote the amount

of replenishment in slot t, while P (t) denotes the allocated energy in slot t.

For simplicity of exposition, we assume that the harvested energy arrives at

the beginning of each slot and is immediately stored in the battery. We also

assume that the initial battery is empty. At all times, the stored energy is
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never allowed to exceed Bb. Let R(t) represent the cumulative harvested

energy from slot 1 to slot t, i.e.,

R(t) =

t
∑

τ=1

r(τ), ∀t ∈ {1, 2, . . . , T}. (22)

For each t, R(t) can be viewed as representing a point on a graph with

time as the x-axis and the cumulated harvested energy as the y-axis. We

connect all the neighboring points R(t) and R(t+1), for all t ∈ {1, 2, . . . , T−

1} with line segments. It immediately follows that R(t) is a continuous,

nondecreasing function of t that passes through points (0, 0) and (T, K),

where K = R(T ).

Similarly, we define E(t) as the cumulative energy consumption from

time slot 1 to slot t, i.e.,

E(t) =

t
∑

τ=1

P (τ), ∀t ∈ {1, 2, . . . , T}. (23)

We assume that R(0) = E(0) = 0. Define ~P = (P (1), P (2), . . . , P (T ))

and ~E = (E(1), E(2), . . . , E(T )). Note that ~E and ~P are related by a 1-1

mapping because P (t) = E(t) − E(t − 1), for all t ∈ {1, 2, . . . , T}. Hence-

forth, we will interchangeably call both ~E and ~P , the energy allocation

scheme.

We investigate the finite-horizon throughput maximization problem for

a single node assuming that the replenishment rate profile for the entire

finite-horizon period is known in advance. During a time slot, the through-

put of the node is characterized by a nondecreasing and strictly concave

rate-power function µ(P ), satisfying µ(0) = 0. Recall that µ(P ) represents

the amount of data that can be transmitted using P units of energy in a

slot under a given physical layer modulation and coding strategy. We are

interested in finding an energy allocation policy ~P = (P (1), P (2), . . . , P (T ))

that maximizes the throughput during T time slots. Since the cumulative

used energy cannot be greater than the cumulative harvested energy for

any slot t, a natural constraint is given as follows:

E(t) ≤ R(t), ∀t = 1, 2, . . . , T. (24)

Since computing ~E is equivalent to computing ~P , the problem is formu-
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lated as follows:

P (3.2.1) max
~P

T
∑

t=1

µ(P (t))

s.t. E(t) ≤ R(t), ∀t ∈ {1, 2, . . . , T} (25)

Note that an optimal solution ~E∗ must satisfy that at all time slots,

the residual energy, R(t) − E∗(t), is no greater than the battery capacity

Bb. Otherwise, some energy will be lost due to the finite battery size,

and we can easily find another energy allocation that achieves a greater

throughput than ~E∗, contradicting the optimality of ~E∗. Hence, together

with Equation (24), we obtain

R(t) − Bb ≤ E(t) ≤ R(t), ∀t ∈ {1, 2, . . . , T}. (26)

Therefore, P(3.2.1) can be formulated as

P (3.2.2) max
~P

T
∑

t=1

µ(P (t))

s.t. R(t) − Bb ≤ E(t) ≤ R(t), ∀t ∈ {1, 2, . . . , T} (27)

Fig. 7. The feasible domain D and the shortest curve S(t)

Let domain D denote all possible values that ~E can take such that

Equation (26) is satisfied, in other words, the area that is surrounded by

the curves R(t), R(t) − Bb, the two vertical lines crossing node (0, 0) and

(T, K) as shown in Fig. 7. Note that D is a simply-connected space.
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Definition 1. Feasible Curve: Any nondecreasing curve, defined on

integer-valued t and located in the domain D, is said to be a feasible

curve. From Equation (26), it can be seen that there is a 1-1 mapping

between any feasible curve in D and an energy allocation scheme ~E. For

example, in Fig. 7, the dashed curve and the dot-and-dash curve repre-

sent two different energy allocation schemes. Furthermore, we consider

two feasible curves f and g to be identical, if they have the same value

at every integer point, i.e., f(t) = g(t) for all t = 1, 2, . . . , T . Also

the length of a curve f(t) in an interval t ∈ [a, b] is defined as the sum

of Euclidean lengths of {(x, f(x)), (x + 1, f(x + 1))} in the interval, i.e.,
∑b−1

x=a

√

1 + (f(x + 1) − f(x))2.

Definition 2. Shortest Path: A curve that connects two points (0, 0) and

(T, K) in the domain D is said to be the shortest path ~S, if its Euclidean

length is the smallest among all feasible curves.

In Fig. 7, the shortest path is depicted by the dot-and-dash curve. In

the following Lemma, we show the existence and feasibility of the shortest

path.

Lemma 2. 6 The shortest path ~S exists in domain D, and is feasible.

Let s(t) = S(t) − S(t − 1). We know that ~s = (s(1), s(2), . . . , s(T )) is a

feasible energy allocation scheme by Lemma 2. We first prove a property

of the shortest path S(t).

Lemma 3. 6 The shortest path S(t) is concave at any point t in the set

{t : S(t) < R(t)}, and is convex at any point t in the set {t : S(t) >

R(t) − Bb}, except for the boundary points t = 0 and t = T .

Now, we claim the optimality of the energy allocation scheme ~s via the

following theorem:

Theorem 6. 6 The energy allocation scheme ~s, each element of which

satisfies s(t) = S(t) − S(t − 1), maximizes the throughput of a single node

with rechargeable energy, resulting in an optimal solution to P(3.2.2).

There are some observations related to the shortest-path solution.

1) We can see how the battery size Bb influences the optimal energy alloca-

tion solution. If Bb is large enough, we can see that R(t) − Bb will always

be less than 0. As a result, the domain D only has an upper bound R(t).

On the other hand, if Bb is very small, in particular, when Bb = 0, then
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R(t) and R(t) − Bb will coincide to become one curve, which is also the

only feasible curve. The corresponding energy allocation scheme is then to

spend all the energy harvested in the current time slot. This corresponds to

the correct intuition that if the energy buffer size is zero, the best scheme

is to spend all the harvested energy, since no energy can be stored.

2) Note that Theorem 6 holds for any nondecreasing and concave function

µ(P ). We can also incorporate the energy cost for sensing data. Let ϕ(P )

represent the amount of data generated using P units of energy for sens-

ing. Typically, ϕ(P ) is assumed to be linear, i.e., ϕ(P ) = γP , where γ

is a constant scaler. We can prove that the amount of data generated by

sensing and then transmitting is also a concave function of P . Therefore,

the shortest-path scheme is still the solution to the problem of maximizing

the amount of data sensed and then transmitted in the period [0, T ].

3.3. A Cross-Layer Framework for Multihop Networks with

Renewable Energy

For finite horizon dynamic decision problem investigated in Section 3.2,

the future information is assumed to known by the controller which is not

practical. Although Section 3.1 does not require future information as in

Section 3.2, some statistical assumptions such as Equation (14) are required.

Furthermore, schemes in Sections 3.2 and 3.1 proposed for single node are

not easy to extend to a network setting. In this section, we describe how

the authors in8 propose a general cross-layer resource allocation framework

for multihop rechargeable networks as shown in Fig.8.

)(2
1 tA

)(2,1 tqd

)(3,1 tqd
)(3

1 tA ))(()3,1( tP
�

µ

))(()2,1( tP
�

µ)(1 tqb )()2,1( tP)(1 tr

Fig. 8. Multihop Network Model.

We consider a multihop wireless network G = (N ,L) with N nodes and

L links. We assume a slotted system and each node n ∈ N = {1, 2, . . . , N}

is attached to power sources for replenishment. Let Ae
n(t) (which is upper



March 31, 2013 9:58 World Scientific Review Volume - 9in x 6in Chapter

26 Zhoujia Mao, C. Emre Koksal, Ness B. Shroff

bounded by Amax, where 0 < Amax < ∞) and Re
n(t) denote the amount of

available data for sensing and the actual amount of sensed data, to node n

that are destined to node e (possibly through multiple hops) in slot t. We

assume that each node n maintains a separate data buffer with size Bd
n,e

(either Bd
n,e < ∞ or Bd

n,e = ∞) and state qd
n,e(t) for flows destined to e, and

also maintains a battery buffer with size Bb
n (again, either Bb

n < ∞ or Bb
n =

∞) and state qb
n(t). Let rn(t) denote the replenishment at node n in time

slot t. The transmit power is chosen to be Pl(t) (which is upper bounded

by Ppeak, where 0 < Ppeak < ∞) over link l. In the formulation, we assume

that the power the receiving node consumes to receive and decode the

packet is identical to Pl(t) as well. The sole reason for this is simplicity and

the generalization to the asymmetric case is straightforward (By defining a

receiving transmitting power ratio, we can extend it to the general case with

no technique difference). We use the node-exclusive interference model.

Under this model, a node can only receive from or transmit to at most one

node at any time slot. In each time slot t, with the assigned power Pl(t),

the achieved data rate at link l is µl(Pl(t)) in that time slot, where the rate

function µl(·) is a non-decreasing, concave and differentiable function on the

half real line ℜ+
⋃

{0} satisfying µl(0) = 0. Let Ωn and Θn denote the set of

directed links originated from node n and terminate at node n, respectively.

We say ~P = [P1(t), P2(t), · · · , PL(t)] satisfies the node-exclusive model if

Pl(t) > 0 for some l ∈ Ωn∪Θn, then Pl′ = 0 for all l′ ∈ (Ωn∪Θn)\{l}. Our

general objective is to maximize the long-term average sensing rate subject

to the QoS constraints on both data and battery queues:

P (3.3) max
~P ,~R

lim inf
T→∞

1

T

T−1
∑

t=0

∑

n,e∈N

Re
n(t)

s.t. ~P (t) satisfies the node-exclusive model, (28)

qd
n,e(t + 1) ≤ min

[

(

qd
n,e(t) −

∑

l∈Ωn

µe
l

(

Pl(t)
)

)+

+ Re
n(t)

+
∑

l∈Θn

µe
l (Pl(t)), B

d
n,e

]

, n 6= e, (29)

qb
n(t + 1) = min

[

qb
n(t) −

∑

l∈Ωn∪Θn

Pl(t) + rn(t), Bb
n

]

, (30)
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0 ≤
∑

l∈Ωn∪Θn

Pl(t) ≤ min
[

qb
n(t), Ppeak

]

, (31)

N
∑

e=1

µe
l

(

Pl(t)
)

= µl

(

Pl(t)
)

, Re
n(t) ≤ Ae

n(t), (32)

lim sup
T→∞

1

T

T−1
∑

t=0

qd
n,e(t) < ∞, n 6= e, (Bd

n,e = ∞),

or pd
n,e ≤ ηd

n,e, (Bd
n,e < ∞) (33)

po
n ≤ ηo

n, (34)

where (·)+ = max[·, 0], ~P (t) is the power assignment vector for all links in

slot t, ~P is the power assignment for all links over all time slots, and ~R is

the actual sensing data vector for all node-destination pairs over all time

slots, and

pd
n,e =







0, if lim infT→∞
1
T

∑T−1
t=0

(

Re
n(t) +

∑

l∈Θn
fe

l (t)
)

= 0

lim supT→∞

1
T

∑T−1
t=0 De

n(t)

1
T

∑T−1
t=0

(

Re
n(t)+

∑

l∈Θn
fe

l
(t)
) , otherwise

, n 6= e

(35)

po
n = lim sup

T→∞

1

T

T−1
∑

t=0

1o
n(t) (36)

are the long-term data loss ratio with an upper bound ηd
n,e, and the fre-

quency of visits to zero battery state with given threshold ηo
n, respectively,

where fe
l (t) is the actual amount of data transmitted through link l destined

to node e in slot t, and

De
n(t) =

(

(

qd
n,e(t) −

∑

l∈Ωn

µe
l

(

Pl(t)
)

)+

+ Re
n(t) +

∑

l∈Θn

fe
l (t) − Bd

n,e

)+

,

(37)

1o
n(t) = indicator that battery hits zero state in slot t for node n

=

{

0 if
∑

l∈Ωn

⋃

Θn
Pl(t) < qb

n(t)

1 otherwise
(38)

are the amount of data loss and the indicator that the battery discharges

completely in time slot t, respectively. Some applications may require the

battery state to be always above certain positive level, then Equation (38)

can be easily modified to represent how often the battery is below the

desired level, and our solution structure works as well. Note that, we do
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not assume ergodicity of the system parameters, but if they are ergodic,

then po
n represents the actual probability of a complete discharge event as

t → ∞.

In P(3.3), constraint (28) is the interference constraint. Constraints (29)

and (30) describe how the data and battery queues evolve, respectively.

Note that the destination node of each flow does not need to maintain a

data buffer for that flow, as indicated in (29). Constraints (31) are the

energy conservation equations stating that we cannot oversubscribe the

energy that is unavailable in the battery nor can we exceed the peak power

level. Constraints (32) are the rate conservation equations that bound the

actual amount of sensed data Re
n(t) by the available amount of data Ae

n(t),

and share the transmission rate of a link among all the destinations in slot

t. Constraint (33) is the QoS constraint for data queue: if Bd
n,e = ∞, we

need to keep the data queue stable, and if Bd
n,e < ∞, the data loss ratio is

required under a given threshold ηd
n,e. Constraint (34) is the battery QoS

constraint of the desired battery discharge rate ηo
n.

We define q̃d
n,e and q̃b

n as the virtual data and battery queues. The

virtual queues evolve according to the following Lindley’s queue evolution

equations:

q̃d
n,e(t + 1) =

(

(

q̃d
n,e(t) − ηd

n,e

(

Re
n(t) +

∑

l∈Θn

fe
l (t)

)

)+

−
∑

l∈Ωn

µe
l

(

Pl(t)
)

+ Re
n(t) +

∑

l∈Θn

fe
l (t) + Ie

n(t)

)+

, (39)

q̃b
n(t + 1) =

(

(

q̃b
n(t) − ηo

n

)+
+

∑

l∈Ωn∪Θn

Pl(t) − rn(t) + Mn(t) + 1o
n(t)

)+

,

(40)

where Ie
n(t) =

(
∑

l∈Ωn
µe

l

(

Pl(t)
)

− q̃d
n,e(t)

)+
is the amount of transmitted

idle packets when there is no enough data to transmit using the allocated

energy, Mn(t) =
(

qb
n(t) −

∑

l∈Ωn∪Θn
Pl(t) + rn(t) −Bb

n

)+
is the amount of

missed replenishing energy due to full battery when Bb
n < ∞, and 1o

n(t)

is defined in Equation (38). Note that if Bb
n = ∞, then Mn(t) = 0 and

Equation (40) reduces to q̃b
n(t + 1) =

(

(

q̃b
n(t) − ηo

n

)+
+
∑

l∈Ωn∪Θn
Pl(t) −

rn(t) + 1o
n(t)

)+

.

Fig. 9 shows the relationship between the actual and virtual battery

queues when the battery size is finite. The amount of change in qb
n(t) from

time t to t + 1 is
∑

l∈Ωn∪Θn
Pl(t) − rn(t) + Mn(t). Since the battery has a
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Fig. 9. Battery Queue and Virtual Battery Queue

finite size, this term vanishes when averaged over an infinitely long period

of time. Then, po
n = lim supT→∞

1
T

∑T−1
t=0 1o

n(t) and ηo
n can be viewed

as the long-term input and output rate of q̃b
n(t), respectively. Thus, it is

reasonable to expect that q̃b
n(t) being stable implies po

n ≤ ηo
n.

Without loss of generality, the initial state q̃b
n(0) and q̃d

n,e(0) can be

set to be zero. The following proposition shows that if the virtual queues

q̃d
n,e(t), q̃b

n(t) and the actual battery queue qb
n(t) are all strongly stable, pd

n,e

and po
n are guaranteed to meet their constraints.

Proposition 3. 8 If all the virtual queues q̃d
n,e(t), q̃b

n(t) and the actual

battery queue qb
n(t), ∀n, e ∈ N are all strongly stable, then pd

n,e ≤ ηd
n,e and

po
n ≤ ηo

n, ∀n, e ∈ N .

The joint rate control, power allocation and routing algorithm for multi-

hop networks can either be implemented in a centralized or distributed man-

ner. For the centralized solution, we use the classical Maximal Weighted

Matching (MWM) based algorithm and for the distributed algorithm, we

can use the Maximal Matching (MM) based algorithms as in.30

Multihop Rate Control (MRC):

We define 0 < V < ∞ to be the control parameter of our algorithm. Let

Qd
n,e(t) = qd

n,e(t) when Bd
n,e = ∞, and let Qd

n,e(t) = (1 − ηd
n,e)q̃

d
n,e(t) when

Bd
n,e < ∞. Depending on whether Maximum Weight Matching or Maximal

Matching is employed by the scheduler, there is a slight difference in the

implementation of MRC:

Maximum Weighted Matching (MWM): If Qd
n,e(t) ≤

V
2 , node n chooses to

sense all the available data packets, i.e., Re
n(t) = Ae

n(t); otherwise, reject

all the arrivals, i.e., Re
n(t) = 0.

Maximal Matching (MM): If Qd
n,e(t) ≤ V , node n chooses to sense all the

available data packets, i.e., Re
n(t) = Ae

n(t); otherwise, reject all the arrivals,

i.e., Re
n(t) = 0.

Multihop Power Allocation (MPA):

Here the goal is to ensure that no node transfers data of a flow to a relay
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node that is not the destination of that flow, unless the differential backlog

for that flow is greater than a fixed value γ > 0. We will choose the value

of γ such that the resulting backlog of the receiving node is not larger

than that of the transmitting node after the transmission. This pushes the

data flow from the source to the destination with a positive back pressure.

Let tran(l) and rec(l) denote the transmitting and receiving node of link l,

respectively. We first define

γe
l =

{

γ if rec(l) 6= e

0 otherwise

where γ > 0 is some constant. Let el(t) = argmaxe

{

Qd
tran(l),e(t) −

Qd
rec(l),e(t)−γe

l

}

be the flow on link l that has the maximal modified differ-

ential backlog, and wl(t) = max
[

Qd
tran(l),el(t)

(t) − Qd
rec(l),el(t)

(t) − γ
el(t)
l , 0

]

is the nonnegative differential backlog of l at time t.

For each link l, solve

max
Pl(t)∈Πl(t)

wl(t)µl

(

Pl(t)
)

−
(

q̃b
tran(l)(t) + q̃b

rec(l)(t)
)

Pl(t) (41)

where Πl(t) =
{

Pl(t) : 0 ≤ Pl(t) ≤ min
[

qb
tran(l)(t), q

b
rec(l)(t), Ppeak

]}

.

Let P s
l (t) be the solution for link l. With the calculated power P s

l (t),

let Wl(t) = wl(t)µl

(

P s
l (t)

)

−
(

q̃b
tran(l)(t) + q̃b

rec(l)(t)
)

P s
l (t) be the weight on

link l.

For the whole network, we either use the MWM or MM as described

below.

Maximum Weighted Matching Algorithm: link l has weight Wl(t), then the

weight of a matching M is WM(t) =
∑

l∈M Wl(t). The network chooses

a maximum weighted matching in a centralized manner, the links in the

chosen matching become active with the calculated transmitting power,

and other links are not activated.

Maximal Matching Algorithm: the network calculates a maximal matching

that achieves at least half of the total weight of MWM in a fully distributed

manner as in.30 The links in the chosen matching become active with the

calculated transmitting power, and other links are not activated.

Multihop Routing :

When wl(t) > 0, transmit for flow that is destined to el(t) with rate

µl

(

Pl(t)
)

, i.e., µ
el(t)
l

(

Pl(t)
)

= µl

(

Pl(t)
)

and µe
l

(

Pl(t)
)

= 0, ∀e 6= el(t).

Note that MRC and routing can be done by each node independently. We

then give our main theorem for the multihop scenario:
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Theorem 7. 8 If

(1) µl(·) is concave on ℜ+
⋃

{0}, and its slope at 0 satisfies 0 ≤ β = µ′
l(0) <

∞, ∀l ∈ L,

(2) ∀n ∈ N : 0 < rn(t) ≤ rmax, ∀t ≥ 0,

then the maximum weighted matching based joint rate control MRC,

power allocation MPA, and routing algorithm achieves:

Qd
n,e(t) ≤

V

2
+ Amax, (42)

q̃b
n(t) ≤β

(V

2
+ Amax

)

, (43)

∑

n

{

lim inf
T→∞

1

T

T−1
∑

t=0

∑

e

Re
n(t)

}

≥
∑

n

{

lim inf
T→∞

1

T

T−1
∑

t=0

∑

e

Re∗
n (t) − ηo

n(µmax

+ β) −
∑

e

ge
n(V, Bd

n,e, B
b
n)

}

− O(
1

V
),

(44)

and the maximal matching based joint rate control MRC, power allocation

MPA, and routing algorithm achieves:

Qd
n,e(t) ≤V + Amax, (45)

q̃b
n(t) ≤β(V + Amax), (46)

∑

n

{

lim inf
T→∞

1

T

T−1
∑

t=0

∑

e

Re
n(t)

}

≥
∑

n

{

lim inf
T→∞

1

T

T−1
∑

t=0

∑

e

Re∗
n (t)

2
− ηo

n(µmax

+ β) −
∑

e

ge
n(V, Bd

n,e, B
b
n)

}

− O(
1

V
).

(47)

where µmax = µ(Ppeak) is the upper bound for the transmission rate, and

ge
n(V, Bd

n,e, B
b
n) =



























0, if Bd
n,e = ∞, Bb

n = ∞

O(
(βV −Bb

n)+

V
), if Bd

n,e = ∞, Bb
n < ∞

O(
(V −Bd

n,e)
+

V
), if Bd

n,e < ∞, Bb
n = ∞

O(
(βV −Bb

n)+

V
) + O(

(V −Bd
n,e)+

V
), if Bd

n,e < ∞, Bb
n < ∞

.

In Theorem 7, V is a finite tunable approximation parameter that con-

trols the efficiency of the algorithm. Observe Equation (44) and (47), which

compares the performance of our algorithm with that of the optimal solu-

tion of P(3.3), the term ηo
n(µmax + β) captures the influence of battery
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outage, and it is small since the battery outage threshold ηo
n is usually set

to be very small to avoid network disconnection. Function ge
n(V, Bd

n,e, B
b
n)

represents the asymptotical property of the gap with respect to buffer sizes.

We consider a network topology, shown in Fig. 10 (a). There are 6

nodes, 7 links, and 2 flows with source-destination pair (3, 1) and (5, 2),

respectively. In all simulations, the simulation time is T = 106 time slots.

We use the rate power function µl(Pl) = 10 log2(1 + glPl

Nl
) packets/slot

∀l ∈ L. Let the power of the background noise Nl = 1.6× 10−14W, ∀l ∈ L,

and the channel gains gl = 1.6 × 10−13, ∀l ∈ L. Each node is equipped

with an infinite data buffer for each flow through it. The number of ar-

rivals A1
3(t), t ≥ 0 and A2

5(t), t ≥ 0, are modeled as independent Poisson

random variables with mean λ = 20 packets/slot and Amax = 30 pack-

ets/slot. We set ηo
n, the threshold of battery outage probability to 0.03

for all n ∈ N and the peak power Ppeak = 1.5W . The backlog threshold

γ = 80 ≥ maxn,e

(

∑

rec(l)=n µl + Ae
n

)

= 2 × 10 log2 (1 + 10Ppeak), so that

the resulting backlog of the receiving node is not longer than that of the

transmitting node.

5

2

61

2

3

source 2
3

1

4

4 5

6 7

source 1

destination 2 destination 1
(a)

0 5000 10000 15000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

T(slot)

R
ep

le
ni

sh
m

en
t(

J/
sl

ot
)

(b)

Fig. 10. (a) Network Topology and (b) A Sample Replenishing Process

Scenario 1 : We first use a replenishment process which is formed by

a periodic deterministic sine waveform (rmax = 1.2 and period 8000) plus

independent Gaussian noise with zero mean and variance 0.01, as shown in

Fig. 10 (b) (The cycles imitate the daily solar cycles for a solar battery and

the average replenishing can be simply calculated r̄ = 0.2). All the battery

buffer sizes are set to be Bb = 100J . We simulate both MWM based and

MM based algorithms. We choose different values of the control coefficient
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V for the proposed algorithm and compare the results with the optimal

value§. From Fig. 11 (a), we see that as V increases, the average total

sensing rates of the MWM and MM based algorithm keep increasing and get

closer to the optimum and a value that is much larger than half optimum,

respectively. This is consistent with Equation (44) and Equation (47).

From Fig. 11 (b), we see that as V increases, the average data queue length

(we here only plot the data queue length of node 3 for flow 1 due to space

limitation) keeps increasing but is upper bounded by the bound we get in

Equation (42) and Equation (45). This means the queueing delay increases

as we improve the sensing rate, which can be viewed as a tradeoff. From

Fig. 11 (c) we observe that the battery discharge probability (we only plot

for node 5 here) increases to the threshold as V increases.

Scenario 2 : We use different replenishment processes: r2(t) and r5(t)

are i.i.d Bernoulli random variables Bernoulli(0.5) (i.e., r2(t) = 1 w.p. 0.5

and r2(t) = 0 w.p. 0.5); replenishing at all other nodes are independent

Bernoulli random variables 0.2 × Bernoulli(0.5) in even number slots, and

0.6 × Bernoulli(0.5) in odd number slots (r̄2 = r̄5 = 0.5 and r̄ = 0.2 for

other nodes), all plus Gaussian noise with zero mean and variance 0.01.

This replenishing process is faster time-varying than the one in Scenario 1.

We simulate three different battery sizes Bb = 100J , Bb = 10J and Bb = 1J

(all nodes has the same battery sizes) for the MWM based algorithm. From

Fig.. 11 (d), we can see that the sensing rate increases as battery size

increases. However, as long as the battery is large compared to the average

replenishing rate, the improvement diminishes with increasing battery sizes.

3.4. Summary

The three problems discussed in Section 3 have the same dynamic battery

model and all of them aim to maximize a system utility. In,6 the time

horizon is finite while7 and8 consider a infinite horizon problem. In,7 the

authors characterize the basic limitation and tradeoff between achieving the

maximum objective and the battery discharge or data overflow probability

in a single link communication model. The authors in6 provide an optimal

algorithm for a single link system to achieve maximum utility subject to

§The exact optimal objective value for Problem (B) is hard to obtain, so we here use
an upper bound for the optimum. For this example, an upper bound for the optimum
can be obtained by equal time sharing of schedules {1, 4, 7} and {1, 5, 6}, and utilizing
the link rate µ(r̄) under infinite battery size and no discharge constraint. In Scenario 1,
the optimum is 2µ(r̄) = 30. In Scenario 2, since µ(r̄2) = µ(r̄5) > λ, the optimum is
λ + µ(r̄3) = 35.
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Fig. 11. Performance of the MWM and MM based algorithms. Impact of the control
parameter V on (a) the average total sensing rate, (b) average data queue length, and
(c) the battery discharge probability for Scenario 1. Impact of battery size on (d) the
average total sensing rate for Scenario 2.

the battery constraint when knowing the future information. This gives

an upper bound of the performance for system with a rechargeable battery.

The authors in8 study the utility maximization problem with predetermined

QoS requirements on battery discharge and data overflow and then provide

a simple online algorithm which is also extendable to a multihop network

with distributed implementation.

4. Conclusion

In this chapter, we discussed thoroughly how resource allocation is different

in networks with renewable energy and their non-rechargeable counterpart.

For rechargeable networks, conservative energy expenditure may lead to

missed recharging opportunities due to battery overflow, and aggressive
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usage of energy may lead to battery outage. Consequently, the efficient

dynamic algorithms need to switch between aggressive and conservative

resource allocation, depending on the instantaneous battery state. We in-

vestigate the joint resource allocation of energy, data rates, bandwidth and

routes etc. across different layers of the network under different scenarios.

Basic performance limits for various buffer sizes are illustrated and optimal

or near optimal algorithms are proposed. The common features of all of

the algorithms we studied in this chapter are their low complexity and their

possibility of distributed implementation, which are essential for practical

networks.
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